Problem #1:

Given:

The beam shown

Required:

The internal forces at point E, located at 2 m from A

Solution:

First, we need to calculate the reaction at B. (Why only B?!)
FBD (1) is drawn below.

\[\sum M_A = 0 \]

(Why \(\Sigma M \), not \(\Sigma F \), and why point A?!)
\(4B_y - 4.5(2) - 6(0.5) = 0 \)
\(B_y = 3 \text{ kN (As shown)} \)

Now, we make a section through E and take the right part (Why?!). FBD (2) is drawn.
Note the assumed directions of the internal forces (Why?!)

\[w = \frac{2}{3} \Rightarrow w = 2 \text{ kN/m} \]

\[R = \frac{2(2)}{2} = 2 \text{ kN} \]

Note that the equivalent load \(R \) was calculated after cutting. (Why?!)
\[\sum F_y = 0 \Rightarrow [N_E = 0] \]

\[\sum F_y = 0 \Rightarrow V_E - 2 + 3 = 0 \Rightarrow [V_E = -1 \text{ kN} = 1 \text{ kN} \downarrow] \]

\[\sum M_E = 0 \]

\(-M_E - 2 \left(\frac{2}{3}\right) + 3(2) = 0 \)

\[M_E = 4 \frac{2}{3} \text{ kN.m (as shown)} \]
Problem #2:
Given:
The beam shown

Required:
- The reactions
- The internal forces at the center of the beam

Solution:
To be able to find the reactions, we need to separate the beam at B or E. (Why?!) Taking AB, FBD (1) is drawn. Note that there’s no moment at B. (Why?!).

\[\Sigma M_B = 0 \]
(Why not taking \(\Sigma F_y = 0 \)?)
\[3(1) - A_y(3) = 0 \]
\[\Rightarrow A_y = 1 \text{kN} \uparrow \text{(as shown)} \]

Due to symmetry (in geometry, loads, supports, etc),
\[F_y = A_y = 1 \text{kN} \uparrow \]

Now, we take FBD (2) for the whole beam.
\[+ \Sigma F_x = 0 \Rightarrow [C_x = 0] \]

\[\Sigma M_D = 0 \]
\[\Rightarrow -1(6) + 3(4) - 2C_y + 0.8(4)(1) - 3(2) + 1(4) = 0 \]
\[\Rightarrow C_y = 3.6 \text{ kN} \uparrow \text{(as shown)} \]

By symmetry, \[D_y = C_y = 3.6 \text{ kN} \uparrow \]

To determine the internal forces at the beam center, a cut (section) is made through that point, and FBD (3) (the left part) is drawn.

\[+ \Sigma F_x = 0 \Rightarrow [N = 0] \]
\[+ \Sigma F_y = 0 \Rightarrow 1 - 3 - 1.6 + 3.6 - V = 0 \Rightarrow [V = 0 \text{ kN}] \]

This is expected, as it is the value of the shear in the middle/center of a “symmetrical beam”. (Why and how?!)

\[\Sigma M = 0 \]
\[\Rightarrow M - 1(5) + 3(3) + 1.6(1) - 3.6(1) = 0 \]
\[\Rightarrow M = -2 \text{ kN.m} = 2 \text{ kN.m} \uparrow \]
Problem #3:

Given:

The figure shown

\[D_{AB} = D_{CD} = 20 \text{ mm}; \ D_{BC} = 40 \text{ mm} \]

Required:

\(\sigma \) in AB, BC, and CD

Solution:

\[\sigma = \frac{P}{A} = \frac{N}{A} \]

\(N \) is the internal normal force, obtained by passing a cut (section) through the part of interest. A section through each of AB, BC, and CD is made, and the “easier” part (left or right) is taken and an FBD is drawn, as shown below.

\[(N_A \text{ may be assumed in the other direction } \leftarrow, \ i.e., \ compression.) \]

\[\sum F_x = 0 \ \Rightarrow \ 10 + N_{AB} = 0 \ \Rightarrow \]

\[N_{AB} = -10 \text{ kN} = 10 \text{ kN} \ \leftarrow = 10 \text{ kN} "C" \]

\[\sigma_{AB} = \left(\frac{N}{A} \right)_{AB} = \frac{-10(10)^3}{\pi/4(20)^2} \ \Rightarrow \]

\[\sigma_{AB} = -31.83 \text{ MPa} = 31.83 \text{ MPa } "C" \]

*Be careful about the units (N, m, mm, Pa, MPa,...)
\[\Sigma F_x = 0 \Rightarrow 10 - 10 - 10 + N_{BC} = 0 \Rightarrow \]

\[N_{BC} = 10 \text{ kN} \text{ "T"} \]

\[\sigma_{BC} = \left(\frac{N}{A} \right)_{BC} = \frac{10(10)^3}{\pi/4 (40)^2} \Rightarrow \]

\[\sigma_{BC} = 7.958 \text{ MPa "T"} \]

\[N_{CD} \quad \text{20 kN} \quad \text{(Assumed "T", may as well be assumed "C")} \]

\[\Sigma F_x = 0 \Rightarrow -20 - N_{CD} = 0 \Rightarrow \]

\[N_{CD} = -20 \text{ kN} = 20 \text{ kN "C"} \]

\[\sigma_{CD} = \left(\frac{N}{A} \right)_{CD} = \frac{-20(10)^3}{\pi/4 (20)^2} \Rightarrow \]

\[\sigma_{CD} = -63.66 \text{ MPa} = 63.66 \text{ MPa "C"} \]
Problem #4:

Given:

The figure shown

\(A_{\text{cable}} = 20 \text{ mm}^2 \)

Required:

\(\sigma \) in the cables.

Solution:

In order to determine the stresses in the cables, we need to find the internal normal forces in these cables as \(\sigma = \frac{N}{A} \) where \(N \) is the internal force.

FBD (1) is drawn for AB. (Why?!)
Now, FBD (2) for DC is drawn.

(Another FBD for both AB and DC can be drawn. Why and how?!)