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Matrix Structural Analysis: Stiffness Analysis of Trusses, Beams and Frames
                    Summary of lectures 38-45


Introduction: 


The stiffness of a structural element is defined as the action (force or moment) required to cause a unit deformation (linear displacement or angular displacement). This concept is easily understood if a linear spring or an angular spring is considered and the corresponding stiffnesses are 



Spring  linear stiffness kFs/ s 




Spring  angular stiffness kMs/ s 


[image: image1]
Structural Stiffness:
Each structural elements has possible moments (linear and/or angular). These possible movments are called the degrees of freedom (DOFs). The designation of the DEOFs is essential for a successful stiffness-based structural analysis.  For structural analysis, the elements may either be bar elements with only axial stiffness (such as a truss element that can carry only tension or compression forces), and/or a beam element  that will have axial, shear and bending stiffnesses: kakyk. 
The stiffness is obtaind for a typical element by fixing all the dispalcemnts except the one whose direction is used to describe the stiffness.

For a truss element it is known form structural mechanics that axial deformation is given as 




NL/AE
Then with the required force N = AE/L

[image: image2]
Similarly, for a beam element, it has been shown that the bending stiffness to give one unit slope at end i is kEI/L The following beam model (used early in slope deflections equations and moments distributions) is used to express the relationship between end moments, displacements and effect of loads using the fixed end moments. 

[image: image3]
LOCAL AND GLOBAL COORDINATE SYSTEMS:
As a structure may be composed of several elements connected together in different orientations, the writing of the requirements of equilibrium and structural compatibility requires that a common coordinate system is used to combine the forces form the different local (element) coordinate systems. This means that the structure will have only one common (global) coordinate system, and each element will have its arbitrary local coordinate system. For a plane structural system ( all loads and members are in one plane), the relations between any local system and the global coordinate system is determined by the directions cosines x  and y as shown in the following schematic description for a typical beam element with angle defining the orientation of the element in the form given to define the near end and far end The angle  will have a different value if the local coordinate system is reversed but the final results will not be affected if the systematic stiffness procedure and the transformation from the local to coordinate systems are followed correctly according t[image: image20.bmp]o the positive directions of the DOFs.

LOCAL AND GLOBAL STIFFNESS NATRIX:

· Truss structure:

It is easily seen that for a truss element only two local DOFs are possible (one per joint) at the two end of the element. The equations that relate the member force to member end displacements at the two ends are written (in the local system using joint equilibrium).
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· Beam/Frame Structure:

It is easily seen that for a beam element only three DOFs (per joint) are possible at the two end of the element. The equations that relate the member end forces to member end displacements at the two ends are written (in the local system using joint equilibrium) as follows:
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Te Qe =k, Te De sk D)

To solve for the vector of nodal forces Qe , pre-multiply euation (3) by the inverse of
matrix T, such that the equation is

T TeQe= T K Te De -4

Now it is noted that T, ' T, = identity matrix I where 1 Q¢ = Qu, then the required stiffness
matrix equations for ach clement in the global system is

Q= T kT De -6

e, Inverse of the Transformation Matrix Te:
The inverse Te" is obtained as follows:
T, = [Cofactor Te]" (1/Determinant of Te)
[cosp sinp 0]" "uu:ﬂ —sinf 0
= 1/(cos* P +sin® B) | —sinfi cosp 0 inB  cosp ol
0 0 |‘ | o 0o

Jve
Therefore, it is coneluded that once the matrix T is determined for each clement, only i
transposc is required and equation (5) for each element is re-written as:

. (6)
(D

1. Assembly of the Structure Stiffness Matrix Equations:

Once equations (7) arc written for each element, the complete system of cquations is
assembled to solve for the vector of unknown nodal displacements. To simplify the solution.
process the unknown DOFs are numbered first while the known or restrained (i.¢. zero) DOFs
are numbered last. Tn this form the resulting syslm matrix equations are written in a
partitioned form as follows:

[Ku KD, [0 '
g o A

where €, is the vector of equivalent nodal [oree in the direction of unknown DOFs, while Qr
is the vector of reactions in the dircctions of restrained DOFs.

2 Solution for Nodal Displacements and Supports Reactions:
Ttis easily seen that from the first row of equation (8):

Du=(Ku)" | Qu-Ku D] ... (9)

Fquation (9) is further simplificd il veetor Dy = 0 (i.c. all known DOF's are restrained). The

equation becomes: Dy = (Ku)" Que

From the second row of equation (8) the support reactions are obtained from the vector Qr=
KD+ Ko Dy e (10)

. Solution for Nodal Forces for Each Element:
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Tt is finally noted that vector e will include the nodal shear forces and nodal hending
moments for cach clement. Onee these nodal forces and moments are known (and for the
given loads on the structure and for the particular element), the SFD) and BMD) for each
clement are determined.

Tt is also noted that to ensure the success of the numerical procedure outlined above to
solve frame-type structures, an extra care must be exercised in defining and using a
numbering scheme to number individual elements and nodal displacements (i.c. DOFs).
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unbesng o wodd DOFs $~

edewment €,
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THE STRUCTURE STIFFNESS MATRIX EQUATIONS:

The combined structural stiffness matrix equations are obtained from joint equilibrium including actions of all displacements, loads, and support reactions. The final form of the Matrix equations is written symbolically as




Ks s = Qs 

where: Ks is the structure stiffness matrix whose size (number of rows and columns) is equal to the number of DOFs.; s = is the vector of DOFs, and  Qs = is the vector of equivalent joint loads ( is equal to the negative of the sum of end forces and moments at the joint under consideration). 

It is to be noted that the designation (numbering of the DOFs) should start with the unknown DOFs so that the procedure can be orderly programmed for computations. The matrix equation can then be partitioned in the following form:
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Then since the vector 
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is known to be zero for rigid supports, the first rows of the the partitioned matrix is solve for  
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Now the  support reactions are obtained agin by considering the joint equilibrium requirements and it is easily seen that the supports reactions are given as




R = Qf + FEMs or FEFs
with Qf, obtained from the second row of the partitioned stiffness matrix equation given above and this is easily computed once the vector 
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is computed.
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[CHAP. 10

Table 10-1. Segmental Stiffnesses, Straight Bar

Ei=0
K =0

Koy = =1281(
Koy = —12E1/R

Kuy = —8EI/B

Ka=0
Ku=0

Ky = 12BLE I
Ky = +12B1/8 +8BIE

s
K= +8EIB

Ko = V6ELR +ag1L
Ky = HEIB 12EI

Koy = 28I
Ky = HEIfL

108 REDUCED STIFFNESS MATRIX
Tn the analysis of rigid frames the axial deformations can be

neglected and the stiffness

‘mafrix (10.7) can be reduced to a [4X 4] matrix.

The general notation is then replaced by the more meaningful symbols, namely

[V [ fu=Clw S —CSu || 5
Ve —CTuu CTw. —CSue  Sw | dn

[#Vue

FVa
(10.9)

Y| | Sm CSw K CEm o
| Mo CSu  Sm CKu  Km|tn

where Via, Vi = end shears, Mis, Mar = end moments, i,

ments, d, f = angular end displacements, FViz, FVi. = fixed end shears,

fixed end moments, at L and R respectively.

FMin
=

8 = vertical end displace-

FMux, FMu
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F-end





N-end 
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MAB = - k33
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Linear spring model to describe the stiffness:





k





Fs





B/A





DOFs for a beam element (+ve directions): 
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