Structural Analysis I- CE 305: 

6/7

Computations of Deflections (deformations: Beams; Frames and Trusses) 

Methods of Real and Virtual Work                                          Summary of lectures 14-19


Basic concepts: 
1. When a structure (beam; frame; truss) is loaded the external forces do work due to structural displacements caused by the structural deformations. Similarly, the internal forces do internal works due to the integral effects of stresses and strains.

2. External work is often referred to as We, and internal work is often designated U to indicate the strain energy.
3. The strain energy results from bending stresses, from axial stresses, from shear stresses, and torsion stresses. For example when a moment M(x) is acting on a beam cross section, it can be easily proved that since U= ∫ u dV (with u =  ∫ d , the area under the stress-strain diagram "energy/unit volume"), the bending strain energy is 

U = ∫ (1/2EI) M2(x) dx

Similarly for axially loaded truss member 

U =  (1/2EA) N2L

4. 
The above expression lead to the method of real work and energy to compute deflections: vp and p, since We = U as shown in the following example in Fig. 1
As ach method has advantages and disadvantages as can be seen from the steps involved in each procedure and the physical meaning of the results obtained in each case, the method of real work can be used to determine the deflections only at points where the load (real P and real M) is applied. The deflection by the methods of real work can be determined only in the same direction of the action (force or moment).  
[image: image7.bmp]Example 1: Determine deflection v(L) for the beam shown in Fig. 1 below,
          Fig.1:

The Method of Real Work and Energy:
We = U
1/2 P vp = ∫ (1/2EI) M2(x) dx

M(x) = -PL + Px = P(x-L).

vp =  (2/P) [∫ (1/2EI) P2(x-L)2 dx]

    = P/EI [(x-L)3]0L =( P/3EI) [0 – (-L3)] =  + PL3/3EI.  
This is the results known from other methods (e.g.: integrations, moment area theorem, conjugate beam).

Question: how would you determine the slope x at x=L. using the concept of real work and energy given above where on P is applied? 

The Method of Virtual Work and Energy:
The procedure is needed to overcome the problem that comes from the limitations of the method of real work and energy. It is based on the use of a unit dummy (virtual) load applied on the structure in the direction where the deformation is to be determined.
The example above will be resolved for the slope at x=L using the method of virtual work as no moment is applied at x=L. The basis of the method starts from the moment curvature equation where the change in slope value (x) for a beam segment of length dx is termed dand is written as

 


d[M(x) / 1/EI]  dx.
Then knowing that for linear elastic structures the order of loading does not change the final value of the deformations, then:




Work done by F1 due to FWork done by F1 due to F




W(F1)  = W(F2)  or  W(real load) = W(virtual load)

Then also if only bending strains (deformations) are considered, the real deformation is only d This deformation when integrated will give the external external deformations (p and vp) at specified points of the structure. This is valid for both real and virtual loads and it is concluded that 


1.0 * (vp or p ) =  = ∫ m(x) [M(x)/EI] dx


… (1)
where: 1.0 is the unit force or unit moment applied at the point where the displacements vp or p are to be determined. 

The following Example for a cantilever beam is used to illustrate the uses of the method of integrations and the moment area theorems. The same example will be also later solved by the conjugate beam method for illustrations and comparison of the methods.

Example 2: Determine slope (L) for the beam shown in Fig. 2 below,

       Fig.2: 
[image: image1]
 For the above problem: M(x) = - P (L-x) and m(x) = -1.0, then from equation (1) 
above, 

1 * p  =  = ∫0L -1.0 *  [P (x-L)/EI] dx = -P/EI [(1/2) (x-L)2]0L = + PL2/(2EI). 

Then: 
p =  + PL2/(2EI) "clockwise".
Interpretation of results: slope p at x =L for the given P load is + PL2/(2EI), where the +ve sign means the same direction as the applied virtual load. It is here noted that if the virtual load had been applied counterclockwise the value of p would have been with a -ve sign. The results mean the same thing.  
Analysis of Frames and Trusses: 
Analysis of frames and trusses by the method of virtual (dummy) unit load is also based on eqauting the the exteranl work and internal strain energies of a structures. For a frame the main internal action in bending moment M(x) and m(x) and bending deformation (x), while for a truss the main internal action is axial forces S and s and deformations m. 
Therefore the required equation for a frame is:



1.0 * (porp
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where: the NM indicates the number of members in frame and each member may have p segments.
Similarly for a truss structure, the required equation is



1.0 * (p
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It is to be noted here that:

1. porp can be computed at any point of the structure, even if there is no real load applied at the point desired. All that is needed is applying a unit load at the point and in the direction desired.

2. M(x) and S are internal actions from real actions (forces and/or moments) in a beam, frame, or a truss.

3. m(x) and s are internal actions from a virtual unit action (force or moment).

The following examples illustrate the basic steps involved when the method of a unit dummy load method is used to solve for structural deformations of a typical beam, a typical frame, and a typical truss structure.
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Note: Unit load is shown in red for the direction under consideration.





Note: since no real moment is acting at x = L, a virtual unit moment m=1.0 is applied at x =L.


The virtual moment expression(s) m(x) along the beam is (are) obtained. In this case m(x) = - 1.0 (for x = 0 to x =L). 
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(x) = x/A





v (x) = tangential deviation x/A for this problem "only".
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