HOMEWORK SOLUTION
HW #7
GEOTECHNICAL ENGINEERING I
(Question no. 6.25, 6.27, 6.28A, 6.33c..Al-Khafaji textbook)
6.25 Calculate & plot vertical stress increment under the center of storage tank f =35 ft increment 10 ft up to 100 ft deep.
Solution:
z |
R/z |
Dsz |
||
0 |
~ |
1000 |
||
10 |
1.75 |
877.8735 |
||
20 |
0.875 |
573.7619 |
||
30 |
0.583333 |
355.5225 |
||
40 |
0.4375 |
231.0286 |
||
50 |
0.35 |
159.1462 |
||
60 |
0.291667 |
35 ft |
||
70 |
0.25 |
86.92471 |
||
80 |
0.21875 |
100 ft |
||
90 |
0.194444 |
54.14606 |
||
100 |
0.175 |
44.23969 |
6.27 Calculate & plot vertical stress increment under point x. Plot effective overburdaned and effective overburdened + vertical stress increment!
Solution:
See the following calculation (tabled) and graphs:
q = 2 psf
x
z (ft) |
m(A1+A2) |
n(A1+A2) |
I(A1+A2) |
Dsz(A1+A2) |
m(A2) |
n(A2) |
I(A2) |
Dsz(A2) |
Dszx (psf) |
Dseffective (psf) |
Dseffective+Dsz (psf) |
|
|
|
|
|
|
|
|
|
|
|
|
0 |
~ |
~ |
0.25 |
0.5 |
~ |
~ |
0.25 |
0.5 |
0 |
0 |
0 |
2 |
6 |
5 |
0.248 |
0.496 |
1 |
5 |
0.205 |
0.41 |
0.086 |
120 |
120.086 |
4 |
3 |
2.5 |
0.244 |
0.488 |
0.5 |
2.5 |
0.136 |
0.272 |
0.216 |
240 |
240.216 |
6 |
2 |
1.666667 |
0.228 |
0.456 |
0.333333 |
1.666667 |
0.088 |
0.176 |
0.28 |
360 |
360.28 |
8 |
1.5 |
1.25 |
0.21 |
0.42 |
0.25 |
1.25 |
0.07 |
0.14 |
0.28 |
480 |
480.28 |
10 |
1.2 |
1 |
0.19 |
0.38 |
0.2 |
1 |
0.055 |
0.11 |
0.27 |
600 |
600.27 |
12 |
1 |
0.833333 |
0.162 |
0.324 |
0.166667 |
0.833333 |
0.046 |
0.092 |
0.232 |
720 |
720.232 |
14 |
0.857143 |
0.714286 |
0.142 |
0.284 |
0.142857 |
0.714286 |
0.035 |
0.07 |
0.214 |
840 |
840.214 |
16 |
0.75 |
0.625 |
0.125 |
0.25 |
0.125 |
0.625 |
0.03 |
0.06 |
0.19 |
960 |
960.19 |
18 |
0.666667 |
0.555556 |
0.105 |
0.21 |
0.111111 |
0.555556 |
0.024 |
0.048 |
0.162 |
1080 |
1080.162 |
20 |
0.6 |
0.5 |
0.09 |
0.18 |
0.1 |
0.5 |
0.02 |
0.04 |
0.14 |
1200 |
1200.14 |
Note: z = depth (2’ increment) m,n = length,width
of rect./square I = Influence factor
(figure 6.21 textbook) Dsz(A1+A2) = q (IA1+A2) Dsz(A2) = q (IA2) Dszx = Dsz(A1+A2) - Dsz(A2) …stress increment at x Dseffective =
z (gsat-gw)
6.28a Assumed depth increment
0,5,10,15,20,30
Solution:
z (ft) |
m |
n |
I |
Dszrect.(ksf) |
z/r |
x/r |
I |
Dszcirc.(ksf) |
DszTotal.(ksf) |
0 |
~ |
~ |
0.25 |
0.125 |
0 |
1.414 |
0.001 |
0.002 |
0.127 |
5 |
7 |
4 |
0.247 |
0.1235 |
0.5 |
1.414 |
0.06 |
0.12 |
0.2435 |
10 |
3.5 |
2 |
0.24 |
0.12 |
1 |
1.414 |
0.12 |
0.24 |
0.36 |
15 |
2.333333 |
1.333333 |
0.22 |
0.11 |
1.5 |
1.414 |
0.15 |
0.3 |
0.41 |
20 |
1.75 |
1 |
0.2 |
0.1 |
2 |
1.414 |
0.13 |
0.26 |
0.36 |
30 |
1.166667 |
0.666667 |
0.158 |
0.079 |
3 |
1.414 |
0.09 |
0.18 |
0.259 |
6.33c Using Newmark chart In=0.005 and scale z=5 cm
(a) Depth increment 0 ft
Dsz = 200 x 0.005 x q = 1 x 128/(8x8) = 2 ksf
(b) Depth increment 5 ft
Scale 5 ft = 5 cm so that 1 ft = 1 cm
See graph 1.
Nn = 116 (number of element using Newmark chart)
Dsz = In x Nn x q = 0.005 x 116 x 2 ksf = 1.16 ksf
(c) Depth increment 10 ft
Scale 10 ft = 5 cm so that 1 ft = 0.5 cm
See graph 2.
Nn = 54 (number of element using Newmark chart)
Dsz = In x Nn x q = 0.005 x 54 x 2 ksf = 0.54 ksf
(d) Depth increment 15 ft
Scale 15 ft = 5 cm so that 1 ft = 0.33 cm
See graph 3.
Nn = 38 (number of element using Newmark chart)
Dsz = In x Nn x q = 0.005 x 38 x 2 ksf = 0.38 ksf
(e) Depth increment 20 ft
Scale 20 ft = 5 cm so that 1 ft = 0.25 cm
See graph 4.
Nn = 33 (number of element using Newmark chart)
Dsz = In x Nn x q = 0.005 x 33 x 2 ksf = 0.33 ksf
(f) Depth increment 30 ft
Scale 30 ft = 5 cm so that 1 ft = 0.167 cm
See graph 5.
Nn = 24 (number of element using Newmark chart)
Dsz = In x Nn x q = 0.005 x 24 x 2 ksf = 0.24 ksf
Graph 1. Scale 5 ft = 5
cm so that 1 ft = 1 cm Nn = 116 (number
of element using Newmark chart)
Graph 2. Scale 10 ft = 5
cm so that 1 ft = 0.5 cm Nn = 54 (number
of element using Newmark chart)
Graph 3. Scale 15 ft = 5
cm so that 1 ft = 0.33 cm Nn = 38 (number
of element using Newmark chart)
Graph 5. Scale 30 ft = 5
cm so that 1 ft = 0.167 cm Nn = 24 (number
of element using Newmark chart) Graph 4. Scale 20 ft = 5
cm so that 1 ft = 0.25 cm Nn = 33 (number
of element using Newmark chart)
z (ft) |
Dsz (ksf) |
0 |
2 |
5 |
1.16 |
10 |
0.54 |
15 |
0.38 |
20 |
0.33 |
30 |
0.24 |