Geotechnical Engineering I

Dr. Naser A. Al-Shayea Professor, CE, KFUPM

Assemblage of Particles

Assemblage of mineral particles + water + air

(solid) (liquid) (Air)

- mineral particles (diff. sizes)
- vs. organic matters
- Fig. 1.4 Three phases of an element of natural soil
 - Voids are continuous \rightarrow water movement
 - Water dissolved salts and carry solutions
 - Dry \rightarrow No water \rightarrow No pore fluid
 - $\quad \text{Saturated} \ \rightarrow \ \text{No} \ \text{air}$
 - **Compaction**: reduces air by packing soil particles
- Porosity
- Void ratio
- Density
- Phase relationships
- Rock fragments > 1 mm
- Mineral grains $(2 \text{ mm} 1 \mu \text{m})$
- <u>Ex.</u> Sand quartz mineral
- Organic matters
 - plant / animal remains
 - microbial activity
 - humus : mixture of organic compounds
 - peat: organic soil, prolonged periods of match development.

Clay Minerals

- Thickness of single water layer = 2.9 A°
- Kaolinite 7.2 A°
- head
- Halloysite $10.1 \text{ A}^{\circ} \rightarrow 7.2 \text{ A}^{\circ}$
- Montmorillonite 9.6 A° $\rightarrow \infty$
- Illite 10 A°
- Vermiculite 10 to 14 A°

Clay Minerals

- Weathering of feldspar + mica
- Small particle size \rightarrow large surface area per unit mass
- Have residual (-ve) charge
- Plastic behavior
- Groups
 - kaolinite
 - montmorillonite
 - illite
 - palygorskite
 - chlorite
 - vermiculite
 - Halloysite
- Clay layer-lattice structure

(layer silicates)

- understand properties

Clay Minerals- structure

- Tetrahedral <u>unit</u>
- Octahedral unit
- <u>T.</u> 4 oxygen (or hydroxyls) enclosing a <u>silicon</u> atom
 - Combine into a **<u>sheet</u>** structure
 - Each oxygen in the base is <u>shared</u> by two tetrahedral
 - Tips are hydroxyls in a silica sheet
- <u>O.</u> Aluminum iron, or magnesium atom enclosed by 6 hydroxyls
 Combined into sheets
- Spacing between T & O sheets
 - Small
 - Link via mutual oxygen or hydroxyl ions
 - Alternate

Clay Minerals - Two-layer lattice

• 1. <u>Kaolinite:</u>

- alternate T & O
- a series of units linked together to form stacks
- L&t

Table 1.3

- hydrogen bonds between layers \rightarrow strong
- stable \rightarrow water can't enter between sheets to expand

- unit cells
- • @ water, some hydroxyls dissociate & lose hydrogen
- atoms \rightarrow (-ve)
- • low -ve charge
- 2. <u>Halloysite</u>:
- similar to Kao
- • more randomly packed
- • may be separated by a single molecular layer of water
- • with water \rightarrow Tube / rod
- • no water \rightarrow plate

Clay Minerals - Three-layer lattice

• • •	: Montmorillonite :Oal, Fe, Mg, or comb :T may be replaced by Al (% ¹ ° <(<u>Si</u> some substitution isomorphous charge)ve-)	0 ۲ ۲ ۲ ۱					
•			Na(in the wate	r Cations+Ca .++	K ،+ attract	ted to satisfy :(
•	the charge		,				
•	5			:particle sta	ick of units		
•				;bond forces		der	
•					mutual att	raction for the exchangeable	
•	cations					3	
•			weak	water can enter	[.] between sh	neets	
•					expansion		
•			* swelling & shrinkage				
•				(wetting)	(drying)	seasonal	
•				rainfall	(
•	Engineering properties charge ve- ,size,	shape, surface	area				
•		1 /)face-to-edge(Flocculated	Natural		
•	Particle orientation		,				
•)face-to-face(Dispersed						
•		<u>taphosphate</u> by	sodium.				
•	* water mixture-plasticity of clay clay type -						

• * : cohesion at low)attractive forces interparticle(internal tension

Clay Minerals

- * Plasticity Index (PI)
- * Ac = Activity = colloidal behavior

(specific)

- size , surface forces surface area
- * specific surface = (SS)
- .Mont SS

- 3m/kN $9, \Lambda) = w$ •
- (pcf)3 ft/Lb $\forall \forall, \xi = \bullet$
- gravitational $2\sec/m$ $9,\Lambda$ = g acceleration
 - 2sec/ft $\forall \forall, \forall = \bullet$

Deposition