CE 353

Ch. 1: Soil Materials

1.0

<u>Def.</u>: Soil is the relatively loose materials, extending from ground surface down to solid rock (bed rock).

Soil formation: by weathering & disintegration from solid rock.

Differ \rightarrow parent materials

- \rightarrow weathering processes
- \rightarrow transportation agents
- glaciers
- water
- wind
- Soil profile \Rightarrow land forms (topographic features)
- Soil is the oldest building material
- Soil supports all structures
- Detailed knowledge of soils at a site
 - physical properties
 - mechanical

- Geotechnical Engineering : application of CE technology to some aspect of the earth.
 - young discipline

Soil mechanics - Eng. Mechanics & prop. of soil mat.

Foundation Eng. - design of foundation (science) earth structures (art)

- soil mechanics
- str. eng.
- geology
-
- Ex. 1. Frozen ground
 - 2. Soil erosion
 - 3. BH # 3 organic soil layer
 - 4. Pavement
 - 5.
 - 6.
 - 7.

- 1.4.1 Geotechnical properties of soils are required for the design of:
 - Foundations
 - Earth Dams
 - Excavation
 - Retaining Structures

Volume change = settlement

- Fill \rightarrow increase load, water drains \rightarrow soil compressed \rightarrow settlement
 - o void ratio (e)
 - o prediction of settlement setting a sample in the lab
 - o permeability
 - rate of settlement (consolidation)
 - o soil improvement pre-loading
- 1.4.2 Stability of soil masses
 - slope stability highways cuts
 - o soil tends to move downward & outward, under the influence of gravity
 - along some failure surface
 - initial movement caused by external actions
 - o shearing resistance (strength) vs. shear stress

1.4.3 Load transfer & bearing capacity

All structures - superstructures - substructures (foundation)

interfaces with ground

- transferring load from superstructure to soil
- economical
- safe \rightarrow tolerate settlement
 - \rightarrow sufficient bearing capacity
 - \rightarrow overturning
 - \rightarrow rotation
 - \rightarrow sliding
 - Depth \rightarrow seasonal changes
 - \rightarrow corrosion
 - \rightarrow method of construction
 - \rightarrow adjacent buildings

- Ex. spread footings
 - mat foundations (if > 50% of area)
 - piles
- 1.4.4 Seepage, flow of water through soil
 - move under influence of gravity
 - o degree of saturation
 - o groundwater table (GWT)
 - Darcy's Law : <u>velocity</u>, <u>hydraulic head gradient</u> coefficient of permeability
 - o Drainage
 - Flow lines
 - Discharge (quantity)

W 5/9/2001

<u>1.1.1</u> Origin & Formation of Soils

- soil minerals : derived from rocks through weathering
- parent rocks igneous
 - sedimentary (layers)
 - metamorphic
- Table 1.1
- Weathering process
 - Disintegration temp. change
 (physical) freezing & thawing
 - prying
 - Decomposition oxidation (chemical) - hydration
 - carbonation
 - chemical effects of plants

- climate
- topography
- time
- geologic history
- rock type

Table 1.2

- 1.2 Soil Deposits
 - Geol. origin \rightarrow physical characteristics

1.2.1 Residual Soils

- formed in-place (Not transported) No erosion Type of parent rock Igneous \rightarrow Granites - sand - silt - kaolinite clay & mica \rightarrow Basalt \rightarrow montmorillonite **Environmental conditions** • Thickness up to 20m • Degree of weathering @ surface fedspar, mica, ferromagnesium \rightarrow clays Joints, shear zones • • Depth of weathering - rock type (porous × impervious) - permeability - cementation * sedimentary rocks - limestone (C_aCO₃) - dissolved & removed by groundwater $+ CO_2$ - cavities - caves - sink holes filled with debris - collapse * metamorphic rock - sand, silt, mica gneiss & schist marble – by solution

Transported Soils

1.2.2 Water - Transported Soils

- River deposits (alluvium)
- lake deposits (lacustrinc)
- sea deposits (marine)
- moving water
 erode
 transport
 deposit
- rounded by abrasion
- alluvial fans : mountain streams enter flat country
- natural levees : rapid deposition along the riverbanks
- varved : uniform laminae of silt & clay
- peat \rightarrow marsh or bog
- tidal lagoon
- swamps

1.2.3 Wind – Transported Soils

- dunes, ridges
- sort uniform size
- loose
- continual migration in the direction of the prevailing wind

٠	Loess	: - high vertical porosity
		- hard (dry)
		- soft (wet)

1.2.4 Soils of Glacial Origin

- continental glaciers North of 40th parallel
 - ice sheets excavated
 mixed
 transported
 deposited
- <u>Till</u> : soil materials deposited directly by ice
- glacial till \Rightarrow wide variation \rightarrow Texture - size: boulder - clay
- meltwater deposits \rightarrow outwash
 - * varved clay
- terminal or end moraines : accumulate ridge at face of the glacier
- eskers : sinuous ridges

remains of rivers flowed beneath or near the ice front

• kames : conical hills

1.2.5 Special Soils

1.

 Expansive soils Collapsing soils Limestone soils Quick clays Organic soils 	<pre>potential disasters</pre>
Expansive soils:	potential for great volume increase, when exposed to water
	Ex. Montmorillonite clays & clay shales

- 2. Collapsing soils: potential for great volume decrease, upon increasing moisture content, without any change in the external loads.
 - Ex. Loess, weakly <u>cemented</u> (soluble gypsum or halite) sand/silt.

* Found in arid regions.

3. Limestone & related materials: solubility & potential for cavity development

4. Quick clays: - great sensitivity to disturbance - significant strength reduction upon remolding - marine origin $\underline{S > 15}$. $S = \frac{s_{undis.}}{s_{dis.}}$

5. Organic Soils:

1.1.2 Assemblage of Particles

Assemblage of mineral particles + water + air (solid) (liquid) (Air) mineral organic matters

particles (diff. Sizes)

Fig. 1.4 Three phases of an element of natural soil

- Voids are continuous \rightarrow water movement
- Water dissolved salts and carry solutions

 $Dry \rightarrow No water \rightarrow No pore fluid$

```
Saturated \rightarrow No air
```

- Compaction: reduces air by packing soil particles
- * Porosity
- * Void ratio
- * Density
- * Phase relationships
- Rock fragments > 1 mm
- Mineral glaciers $(2 \text{ mm} 1 \mu \text{m})$
- Ex. Sand quartz mineral
- * Organic matters plant / animal remains

microbial activity

(humus) : mixture of organic compounds

peat: organic soil, prolonged periods of match development.

Thickness of single water layer = 2.9 A°

Kaolinite	7.2 A ^o		
Halloysite	10.1 A ^o	head \rightarrow	7.2 A ^o
Montmorillonite		9.6 $A^{\circ} \rightarrow$	∞
Illite	10 A ^o		
Vermiculite	10 to 14 A ^o		