<u>CH.5</u>

Water Flow through Soils

- 5.0 Introduction
 - Leakage through earth dams
 - Soil consolidation
 - Foundation settlement
- Flow steady Soil saturated - unsteady - unsaturated

Steady flow in saturated soils

- Flow paths Flow lines
- 5.1 Darcy's Law 1856
 - Constant water pressure differences (h) <u>Fig. 5.1</u> between ends of soil sample
 - Quantity of water flow (Q) per time (+)

Flow rate: $q = \frac{Q}{t} \times \frac{Ah}{L}$, $\frac{q}{a} = v$: velocity $v \times \frac{h}{L}$, $\frac{h}{L} = i$: hydraulic gradient (total head loss per unit length of flow path) $v \times i$ v = k i, k: coefficient of permeability (m/sec) discharge velocity: volume of water that percolates in a <u>unit time</u> across a <u>unit area</u> \perp to flow path. • Actual seepage velocity = effective velocity (v_e)

$$q = v \cdot A = v_e \cdot A_{\text{voids}} = v_e \cdot \eta A$$

$$porosity = \frac{V_v}{V} = \frac{A_v}{A} \qquad \text{Fig. } \underline{5.2}$$

$$v_e = \frac{v}{h}$$

• $k = \frac{g_w}{h} K_{viscosity}$ absolute permeability (m²)

$$K = k \frac{h}{g_w}$$

 $K_{20}=K_{T}$

$$\mathbf{k}_{20} \; \frac{\boldsymbol{h}_{20}}{\boldsymbol{g}_{\mathrm{w}, 20}} = \mathbf{k}_{\mathrm{T}} \; \frac{\boldsymbol{h}_{\mathrm{T}}}{\boldsymbol{g}_{\mathrm{w}, \mathrm{T}}} \qquad \Rightarrow \qquad \mathbf{k}_{\mathrm{T}} = \left(\frac{\boldsymbol{h}_{20}}{\boldsymbol{h}_{\mathrm{T}}}\right) \mathbf{k}_{20}$$

5.2 Permeability measurement - Lab - constant-head test - falling-head test

Constant: $k = \frac{q}{iA}$

Falling:
$$k = \frac{2.3 \text{ a } \text{L}}{\text{A}(\text{t}_2 \cdot \text{t}_1)} \log \frac{\text{h}_1}{\text{h}_2}$$

Table 5.1

5.3 Permeability meas. ----- Field

- Pumping test
- Seepage velocity
- o Open-end tests

ft. lb./ lb = (ft.)

5.4 Hydraulic heads in soils

Head: <u>energy per unit weight</u> (h) \

V Potential & kinetic

- $h_p \ \rightarrow \ \text{ pressure head presume} \div \ \text{unit weight of fluid}$
- $h_e\,\rightarrow\,elevation\;head$
- $h_v \, \rightarrow \, \text{velocity head}$

$$\mathbf{h} = \mathbf{h}_{\mathrm{p}} + \mathbf{h}_{\mathrm{e}} + \mathbf{h}_{\mathrm{v}} = \frac{\mathbf{u}}{\boldsymbol{g}_{\mathrm{w}}} + \mathbf{Z} + \frac{\mathbf{v}^2}{2g} = \mathrm{const}$$

$$\mathbf{h} = \mathbf{h}_{\mathrm{p}} + \mathbf{h}_{\mathrm{e}} = \frac{\mathbf{u}}{\mathbf{g}_{\mathrm{w}}} + \mathbf{Z}$$

- * Fig. 5.8
 - o Datum: any elevation
 - Flow depends only on the diff in total head

Direction:

- 1. Find total head (h)
- 2. Find elevation (h_c)
- 3. Compute pressure head (h_p)
- * Fig. 5.9
- * Table 5.4
- * Fig. 5.10

* Elevation head: depends on datum

* Pressure head:	- actual pressure in water (pore water pressure)
	- height of rise in <u>piezometers</u> (pressure meters) above
	point under consideration

* Total head: $h_e + h_p \implies$ flow gradient

Layered soil ----- Ex. 5.1 5.2

5.5 Basic equation for fluid flow in soil

* P. 151-153

Steady Flow

5.6

5.7

Laplace's equation for steady state fluid flow

$3D \rightarrow 2D \rightarrow 1D$	Graphical solution: (Trial & Error)	
Example 5.3	2 families of curve intersecting at 90° (orthogonal)	
Analytical/numerical methods		
	\rightarrow Flow lines Flow paths	
Flow net 1-D flow	-	
	\rightarrow Equipotential lines	
	(point of equal total head)	
	Flow net	
	Curvilinear squares	

5.8 Flow net for 2-D confined flow

- Nonlinear flow path
- Confined between two impervious boundaries
- 1-D Darcy's LawHead concept (Bernoulli's equation)
- 2-D Graphical method Laplace's equation Flow net (trial & error)

Flow net

1. Bound	1. Boundary condition					
2. Draw	Draw the net - flow lines - equipotential lines			\perp orthogonal		
* Feel.						
 Time consuming Accurate enough seepage quantity pore water pressure gradient 						
(Isotropic)						
* Fig. 5.19						
• Curvilinear squares						
(11) equipotential lines(points of total equal heads)		ads)	(10) equipotential drops (each = 1.0 ft/drop) is lost			
			$i = \frac{\Delta h}{\Delta L}$			
(6) flow lines	\$	\Rightarrow	(5) flow pa	ths channels		
* Steps	P. 165-166					
Determination of rate of flow * 166-167		7	$egin{array}{c} \mathbf{N}_{\mathrm{f}} \ \mathbf{N}_{\mathrm{e}} \ \Delta \mathbf{H} \end{array}$			
5.9 5.10						
5.11 Seepage force						
$i_c = \frac{\boldsymbol{g}_{sat} - \boldsymbol{g}_w}{\boldsymbol{g}_w} = \frac{\boldsymbol{g}}{\boldsymbol{g}_w} = 1$						

$$\mathbf{g}_{w} \qquad \mathbf{g}_{w}$$
$$= \frac{\left(G_{s}+e\right)}{1+e} - 1 = \frac{G_{s}+e-1-e}{1+e}$$
$$i_{s} = \frac{G_{s}-1}{1+e}$$

$$i_c = \frac{G_s - 1}{1 + e}$$