CE 203 STRUCTURAL MECHANICS I

Second Semester 1433 / 2012 (112)
HOMEWORK NO. 7

- Textbook Sections Covered: 5.1-5.4, Torsion : stress and angle of twist - DUE DATE: Monday 19-March-2012

1-Solve problem 5-40 in the textbook. Use the shaft diameter as 30 mm (instead of 25 mm).

2- Use the figure and data for problem 5-70 in the textbook. Determine the absolute maximum shear stress in the shaft and the angle of twist of E with respect to B, and the angle of twist of E with respect to A .

3- The assembly (shown below) consists of a solid rod AB ($\mathrm{d}=20 \mathrm{~mm}$) connected to the inside of a tube DC using a rigid disk at B . The tube DC has an outer diameter of 55 mm and a thickness of 5 mm . Determine the absolute maximum shear stress in the whole shaft and the angle of twist of D , and the angle of twist of A. G = $\mathbf{1 0 0} \mathbf{~ G P a}$.

4 - The solid circular shaft is subjected to the shown torques. If the angle of twist of end C is not to exceed 1 degree, and the allowable shear stress is 60 MPa , determine the smallest (required) diameter of the shaft that may be used. $\mathbf{G}=\mathbf{8 0} \mathbf{~ G P a}$.

5- The given shaft has an outer diameter $=50 \mathrm{~mm}$, and an inner diameter $=30 \mathrm{~mm}$. Determine the shear stress at the inner and outer surfaces in segment CD only. Plot the shear stress distribution along the radius in that segment. Also, calculate the angle of twist of B with respect to $\mathrm{A} . \mathbf{G}=\mathbf{1 0 0} \mathbf{~ G P a}$

