Summary ((Torsion))

Shape	Name	τ	dø/dz	φ	J	Remarks
	solid circular	$\frac{\mathrm{Tr}}{\mathrm{J}}$	$\frac{\mathrm{T}}{\mathrm{JG}}$	TL JG	$\frac{\pi}{2}$ r ⁴	• τ_{max} @ $r_{max} = r_{out}$
(To and The second s	hollow circular	Tr J	$\frac{\mathrm{T}}{\mathrm{JG}}$	TL JG	$\frac{\pi}{2}(r_{o}^{4}-r_{i}^{4})$	• τ_{\max} @ $r_{\max} = r_{out}$
	thin-walled closed	$\frac{T}{2t A_m}$	$\frac{T}{4 \text{ GA}_m^2} \sum_{i=1}^n \frac{S_i}{t_i}$	$\frac{TL}{4 GA_m^2} \sum_{i=1}^n \frac{S_i}{t_i}$	N.A.	 A_m = area contained within mean perimeter (<u>not</u> material area) e.g. Φ Φ Φ Φ τ_{max} @ t_{min}
	solid noncircular	depends on shape $\frac{T}{\alpha \ b \ a^2}$ for rectangle	depends on shape $\frac{T}{\beta b a^{3} G}$ for rectangle	depends on shape $\frac{TL}{\beta b a^{3} G}$ for rectangle	N.A.	For rectangular section, • formula given for τ_{max} at midpoint of long side * $\mathbf{b} \ge a$
$b > h$ $b > h$ $\frac{b}{h} > 10$	narrow rectangle	Th J	$\frac{\mathrm{T}}{\mathrm{JG}}$	$rac{\mathrm{TL}}{\mathrm{JG}}$	$\frac{1}{3}$ bh ³	 b >> h b/h > 10 formulas similar to circular sections except J
etc.	series of narrow rectangles ((section composed of several long narrow rectangles))	$\frac{\mathrm{Th_{i}}}{\mathrm{J}}$	T JG	TL JG	$\sum_{i=1}^{n} J_{i}$ $J_{i} = \frac{1}{3} b_{i} h_{i}^{3}$	 τ_{max} @ h_{max} h is the smaller dimension in each segment. formulas similar to circular and narrow rectangular sections except J_i = Σⁿ_{i=1} 1/3 b_i h³_i n = number of segments