
DEPARTMENT OF CIVIL ENGINEERING
Second Semester 2008-2009 (082)

CE 203 STRUCTURAL MECHANICS = I
 Final Examination

Day and Date: Wednesday, June 24, 2009 Time: 7:00-10:00 AM Time allowed: Three hours

Name		Class Sections (Instructor code)	1 (SHA)	2 (HNG)	3 (AJT)	4 (AHG)	5 (SAG)	6 (AAK)	7 (MMZ $)$
Number	SAMPLE exam!								

Summary of Scores

Note: Basic Formulae sheet is provided with this examination.

Problem 1:

The beam shown in Fig. P-1 is constructed from three wooden boards. The top board $(10 \mathrm{~cm} \times 1.5 \mathrm{~cm})$ is nailed to the vertical board ($12 \mathrm{~cm} \times 1 \mathrm{~cm}$) by nails spaced at $\mathrm{s}=$ 35 mm , while the bottom board ($6 \mathrm{~cm} \times 1.5 \mathrm{~cm}$) is glued to the vertical board. If the beam is subjected to a shear force $\mathrm{V}=15 \mathrm{kN}$, determine:

1. the shearing force in each nail holding the top board;
2. the shear flow (q: force per unit length) in the glue holding the bottom board.

Fig. P-1 Wooden beam composed of three boards held together with nails and glue.

Problem 2:

For the 2-m long beam CD shown in Fig. P-2 (with one end fixed and the other end free) the beam is loaded with three concentrated loads. Determine the normal stresses, at corner points \mathbf{A}, \mathbf{B}, and at the centroidal point \mathbf{C} of the fixed-end (namely: $\sigma_{\mathrm{A}}, \sigma_{\mathrm{B}}$, and σ_{C}) and specify the stress as tensile (T) or compressive (C).

Fig. P-2 : Cantilever beam in 3D with three concentrated loads all applied at points D and E at the free-end

Problem 3:

For the plane state of stress shown on the element given in Fig. P-3:

1- Construct Mohr's circle.
2- Use the circle to determine the principal normal stresses and the orientation of the element on which they act. Show the results on a properly oriented element.
3 - Use the circle to obtain the state of stress on an element oriented 15° counterclockwise from the given element. Show the results on a properly oriented element.
4- Use the stress transformation equations to determine the maximum shear stresses and the orientation of the element on which they act. Show the results on an element.
Note: All calculations and necessary steps should be shown.

Fig. P-3: A plane state of stress at the point

Problem 4:

Determine the state of shear stress τ at points A, B, and C (namely: $\tau_{\mathrm{A}}, \tau_{\mathrm{B}} \tau_{\mathrm{C}}$) on the section of a solid circular shaft at location S-S located $3 m$ from the free-end as shown in Fig. P-4.

Fig. P-4: Beam with two concentrated loads $P_{y}=2 \mathrm{kN}$ and $\mathrm{P}_{\mathrm{z}}=1 \mathrm{kN}$.

Problem 5

The 12-m long beam AF is subjected to the loads shown in Fig. P-5. Using discontinuity (singularity) functions, determine:

1. the equation of the elastic curve $v(x)$;
2. the magnitude and direction of the deflection of the beam at point \mathbf{D};
3. the magnitude and direction of the slopes at the beam two ends at \mathbf{A} and \mathbf{F}.

Fig. P-5: Beam ABCDEF with given $\mathrm{El}=$ Constant.

Problem 6:

For the beam ABC shown in Fig. P-6 use the singularity (discontinuity) function to derive an expression (equation) for the deflection (elastic curve) for the beam shown. EI = constant
Write all necessary boundary conditions, but do not solve for the unknowns in the equation.

Fig. P-6: Beam with free end A at $x=0$, roller-support at B, and fixed-end at C

$$
\uparrow v ;(y)
$$

