

#### King Fahd University of Petroleum & Minerals **DEPARTMENT OF CIVIL ENGINEERING** First Semester 1431-32 / 2010-11 (101) **CE 203 STRUCTURAL MECHANICS I**

# **Final Exam**

#### Wednesday, January 26, 2011 7:00-10:00 P.M.

| Student              | Family |  |  | First |  |  |  |  | CIRCLE YOUR COURSESECTION NO. |                 |               |            |             |              |
|----------------------|--------|--|--|-------|--|--|--|--|-------------------------------|-----------------|---------------|------------|-------------|--------------|
| Name                 |        |  |  |       |  |  |  |  | Class<br>Sections             |                 |               |            |             |              |
| ID No.<br>(9 Digits) |        |  |  |       |  |  |  |  |                               | 1 & 2<br>Hamdan | 3<br>Khathlan | 4<br>Saeid | 5<br>Mesfer | 7<br>Mohamed |

#### **Summary of Scores**

| Problem | Full<br>Mark | Score |  |  |
|---------|--------------|-------|--|--|
| 1       | 15           |       |  |  |
| 2       | 15           |       |  |  |
| 3       | 20           |       |  |  |
| 4       | 15           |       |  |  |
| 5       | 15           |       |  |  |
| 6       | 20           |       |  |  |
| Total   | 100          |       |  |  |
| Remarks |              |       |  |  |

Notes:

- A sheet that includes selected Basic Formulae and definitions is provided with this examination.
  Write clearly and show all calculations, FBDs, and units.

# Problem # 1 (15 points)

The given cantilever beam has a U-shape cross section as shown in the figures. Calculate the largest value for the load P (downward) that can be safely applied to the beam.

Allowable tensile stress = 20 MPa, Allowable compressive stress = 30 MPa



#### Problem # 2 (15 points)

A beam with the cross section shown below is subjected to a vertical shear force  $V_v$ .

- $\overline{y} = 42 \text{ mm and } \overline{I} = 5.416 (10)^6 \text{ mm}^4.$ 
  - a) *Qualitatively* sketch the **shear stress distribution** along the depth.
  - b) Determine the value and location of the **maximum shear stress** if the shear force is 50 kN.
  - c) Calculate the **maximum shear force** which can be applied if the shear resistance of the nail at A is 5 kN and the spacing between the nails is 0.2 m.
  - d) If the applied shear force is 60 kN, what is the **required strength of the glue** at B?
- *<u>Hint</u>: The parts in the problem are <u>independent</u> of each other. You can get credit for any part of the problem you solve even if you did not do other parts or they are wrong.*



# Problem # 3 (20 points)

The solid block is subjected to the loads shown in the figure. Determine **the normal stresses at corners A and B** at the rigid base.

Neglect the weight of the block.



# Problem # 4 (15 points)

A horizontal shaft having a solid circular cross-section (diameter= 100 mm) is fixed on the left and subjected to a vertical force as shown.

- a) Calculate the shear stresses at points A, B, C, D and E.
- b) Determine the state of stress at point A and show it on a differential element.



#### Problem # 5 (15 points)

For the given element:

- a) Construct Mohr's Circle. (*Make sure that the circle is big and clear enough.*)
- b) <u>Use the circle</u> to calculate the principal normal stresses and their orientations. Show the stresses on a properly-oriented element.
- c) <u>Use the circle</u> to calculate the normal and shear stresses obtained if the given element is rotated by 60 degrees counterclockwise. Show the stresses on a properly-oriented element.

#### The use of Transformation Equations is NOT acceptable



# Problem # 6 (20 points)

The beam ABCD (shown below) has a uniform cross-section. Use the singularity functions method to determine

- a) the magnitude and direction of the slope  $\theta_C$  (radians) at support C;
- b) the magnitude and direction of the deflection  $v_B(cm)$  at B.

**Given**:  $EI = 7.47 \times 10^4 \text{ kN.m}^2$ ;  $A_y = 12 \text{ kN}(\downarrow)$ ;  $C_y = 21 \text{ kN}(\uparrow)$ .

