بسم الله الرممن الرحيم
 DEPARTMENT OF CIVIL ENGINEERING Second Semester 1431-32 / 2010-11 (102)

CE 203 STRUCTURAL MECHANICS I
 Major Exam II

Tuesday, May 10, 2011, 7:00-9:15 P.M.

CIRCLE YOUR COURSE--SECTION NO.							
Section \#	$1 \& 2$	3	4	5	$6 \& 7$	8	
Instructor	Altayyib	Dulaijan	Ghamdi	Suwaiyan	Khathlan	Ahmad	

Summary of Scores		
Problem	Full Mark	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	
Remarks		

Notes:

1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
2. Write clearly and show all calculations, FBDs, and units.

Problem \# 1
Shaft $A B C$ is fixed at C and has a solid section between A and B and a thin hollow section between B and C.
Calculate
a) The maximum shear stress in the shaft.
b) The angle of twist at the free end.
$G=80 \mathrm{GPa}$

Problem \# 2

Shaft, shown below, is fixed at both ends A and C. The segment $A B$ has diameter 90 mm and $G_{A B}=40 \mathrm{GPa}$. The segment $B C$ has diameter 60 mm and $G_{B C}=80$ GPa. Calculate the maximum torque T that can be applied at B, if $\tau_{(\text {allow) AB }}=50$ MPa and $\tau_{\text {(allow)BC }}=70 \mathrm{MPa}$.

Figure 1
Let T_{A} and T_{c} are the torque reactions at ends A and C, respectively.

$$
\begin{aligned}
\Sigma M & =0 \Rightarrow-T_{A}+T-T_{C}=0 \\
& \Rightarrow T_{A}+T_{C}=T \ldots(1)
\end{aligned}
$$

The comparability Condition is as follows:

$$
\begin{gathered}
\phi_{A / C}=\phi_{A B}+\phi_{B C}=0 \\
\Rightarrow \frac{T_{A B} L_{A B}}{J_{A B} G_{A B}}+\frac{T_{B C} L_{B C}}{J_{B C} G_{B C}}=0
\end{gathered}
$$

TAB.

$T_{B C}$

$$
\begin{aligned}
T_{B C}: \quad C & T_{C} \\
E M & =0 \\
T_{B C} & =-T_{C}
\end{aligned}
$$

Substituting $T_{A B}, T_{B C}, L_{A B}, L_{B C}, J_{A B}, J_{B C}$ $G_{A B}$, and $G_{B C}$ in the comparability condition: -

$$
\begin{aligned}
& \frac{T_{A} \times 3 \times 10^{3}}{\frac{\pi}{2}\left(\frac{90}{2}\right)^{4} \times 40 \times 10^{3}}+\frac{\left(-T_{C}\right) \times 2 \times 10^{3}}{\frac{\pi}{2}\left(\frac{60}{2}\right)^{4} \times 80 \times 10^{3}}=0 \\
& \Rightarrow T_{A}=1.6875 T_{C} \ldots(2)
\end{aligned}
$$

Solving Equations (1) and (2)

$$
T_{A}=0.6279 \mathrm{~T} \text { and } \underline{T}
$$

$T_{A B}$ and $T_{B C}$ from $\tau_{\text {allow }}$ values:-

$$
\begin{aligned}
& \left(\tau_{\text {max }}\right)_{A B}=\frac{T_{A B} C_{A B}}{J_{A B}}=\left(\tau_{\text {allow }}\right)_{A B} \\
& \begin{aligned}
\Rightarrow t_{A B}=\frac{50 \times \frac{\pi}{2}\left(\frac{90}{2}\right)^{4}}{(90 / 2)} & =7156940 \mathrm{~N}-\mathrm{mm} \\
& =7.157 \mathrm{kN}-\mathrm{m} .
\end{aligned} \\
& \text { Similarly, } \begin{aligned}
& T_{B C=}=\frac{70 \times \frac{\pi}{2}\left(\frac{60}{2}\right)^{4}}{(60 / 2)}=2968805 \\
&=2.969 \mathrm{~N}-\mathrm{kN} \\
& \text { Finally }
\end{aligned}
\end{aligned}
$$

Finally,

$$
\begin{gathered}
T_{A B}=T_{A}=0.6279 T=7.157 \\
\Rightarrow T=11.398 \mathrm{lN-m}
\end{gathered}
$$

and $T_{B C}=\left|T_{C}\right|=0.3721 T=2.969$

$$
\Rightarrow T=7.979 \mathrm{MN}-\mathrm{m}
$$

Therefore, maximum torque, T, that C an be applied $=7.977 \mathrm{kN}$-m Ane.

Problem \# 3

Use the graphical method (i.e. areas summation) to draw shear force diagram (SFD) and bending moment diagram (BMD) for beam ABCDE having a hinge at D.

Note: Reaction $\mathrm{A}_{\mathrm{y}}=25 \mathrm{kN}(\uparrow)$.

Note: $\mathrm{E}_{\mathrm{y}}=5.0^{\mathrm{kN}}$ and $\mathrm{M}_{\mathrm{E}}=0.0^{\mathrm{kN} \cdot \mathrm{m}}$.

Problem \# 4

The simply supported T-beam is subjected to the loading shown:
a) Verify that $\boldsymbol{y}_{\mathrm{c}}=75.87 \mathrm{~mm}$ from the bottom of the T - cross-section and that $I_{\mathrm{NA}}=4.235 \times 10^{-6} \mathrm{~m}^{4}$.
b) Determine the maximum tensile and the maximum compressive bending stress in the T-cross-section at point C in the beam.
c) Plot the bending stress distribution along the height of the T-cross-section at point C in the beam.

Solution:

a) First determine reactions at A and $B .20 \mathrm{~mm}$ $\Sigma F_{y}^{+}=0 ; \quad R_{A}+R_{B}=3+2 \times 3=9 \mathrm{AN}$
$\sum M_{A}^{\top}=0 ;-4-3 \times 3-2 \times 3(3+3 / 2)+R_{B}(6)=0$
$R=6.67 \mathrm{kNA}$

$$
\begin{align*}
& \therefore R_{B}=6.61 \mathrm{kNA} \tag{2}\\
& \text { and } R_{A}=2.33 \mathrm{kN1}
\end{align*}
$$

$$
\begin{aligned}
& \Sigma M_{c}^{M}=0 ; M_{c}-4 \\
&-2.33 \times 3=0 \\
& \therefore M_{c}= 10.99 \cong 11.0 \mathrm{kN}-\mathrm{m}
\end{aligned}
$$

b) Yo from bottom $=\sum Y^{\prime} A$

$$
\begin{align*}
& =\frac{(40)(20 \times 80)+(95) \times 30 \times 100)}{20 \times 80+30 \times 100}=15.87 \mathrm{~mm} \tag{2}\\
I_{N A}= & \sum\left(I_{x^{\prime}}+A 1^{2}\right) \\
= & {\left[\frac{1}{12}(0.02)(0.08)^{3}+(0.02 \times 0.08)(0.07581-0.04)^{2}\right] } \\
& +\left[\frac{1}{12}(0.1)(0.03)^{3}+(0.03 \times 0.1)(0.11-0.07587-0.015)^{2}\right] \\
= & 0.853 \times 10^{-6}+2.059 \times 10^{-6}+0.225 \times 10^{-6}+1.098 \times 10^{-6}+0 \\
= & 4.235 \times 10^{-6} \mathrm{~m}^{4}
\end{align*}
$$

c) Since the bending Moment is positive, then the Max tensile bending stress is in the bottom fiber of the eross-section at $C_{\text {bottom }}=15.87 \mathrm{~mm}$,
or

$$
\begin{aligned}
\left(\nabla_{\text {max }}\right)_{\text {Ten }}=\frac{M_{c} C_{\text {bottom }}}{I_{N A}} & =\frac{\left(11100^{3} N-m\right)(0.07587 \mathrm{~m})}{4.235 \times 10^{-6} \mathrm{~m}^{4}} \\
& =197.065 \mathrm{HP}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(V_{\text {max }}\right)_{C_{\text {Imp }}}=\frac{M_{c} C_{\text {Top }}}{I_{N A}} & =\frac{\left(11 \times 10^{3} \mathrm{~N}-m\right)(0.03413 \mathrm{~m})}{4.235 \times 10^{-6} \mathrm{~m}^{4}} \\
& =88.65 \mathrm{NPD}
\end{aligned}
$$

d) Bending Stress distrlaution:

Problem \# 5

If the beam cross-sectional area shown below is subjected to a shear of $V=115$ kN , and it is calculated that its $\boldsymbol{y}_{\mathrm{c}}=32.5 \mathrm{~mm}$ from the bottom, and its $\boldsymbol{I}_{\mathrm{NA}}=$ $0.3633 \times 10^{-6} \mathrm{~m}^{4}$, then determine:
a) the maximum shear stress $\tau_{\text {max }}$ in the cross section,
b) the shear stress just above point A,
c) the shear stress just below point A,
d) the shear stress distribution across the height of the recti $80 \mathrm{~mm} \longrightarrow$

Solution:

$$
\begin{array}{r}
\text { a) } T_{\text {max }} \text { Qecurs at the neutra. } \\
\tau_{\text {max }}=\frac{\frac{V+}{I_{N_{A}} C}}{} \quad \text { N.A. }
\end{array}
$$

$$
Q_{\pi p p}=\Sigma y^{\prime} A=2\left[\frac{0.0075}{2}(0.0075 \times 0.01)\right]+[(0.0125)(0.01 \times 0.08)]
$$

$$
=10.5625 \times 10^{-6} \mathrm{~m}^{3}
$$

$$
\begin{array}{ll}
\left.Q_{\text {sodom }}=\Sigma y^{\prime} 4\right] & =10.5625 \times 10^{-6} \mathrm{~m}^{3} \\
=2\left[\left(\frac{0.0325)}{2}\right)(0.01 \times 0.0325)\right] \quad 2 \quad 10 \mathrm{~mm} \quad 40 \mathrm{~mm} \quad 10 \mathrm{~mm}
\end{array}
$$

$$
=10.5625 \times 10^{-6} \mathrm{~m}^{3}
$$

$$
\therefore \tau_{\text {max }}=\frac{V Q_{\text {max }}}{I_{x_{1} t}}=\frac{\left(115 \times 10^{3} \mathrm{~N} \times 10.5625 \times 10^{-0} \mathrm{~m}\right)}{\left(0.3633 \times 10^{-6} \mathrm{~m}^{4}\right)(2 \times 0.01 \mathrm{~m})}
$$

$$
\text { b) } \tau_{\text {Above } C}=\frac{V Q_{c}}{I_{\text {Vf }} t_{\text {tom } C}}
$$

$$
=167.17 \mathrm{MP}
$$

$$
Q_{c}=(0.0125)(0.01 \times 0.08)=10 \times 10^{-6} \mathrm{~m}^{3} 2
$$

$$
\therefore \tau_{\text {ADar } C}=\frac{\left(115 \times 10^{3} \mathrm{~N}\right)\left(10 \times 10^{-6} \mathrm{~m}^{3}\right)}{\left(0.3633 \times 10^{-6}\right)(0.08 \mathrm{~m})}
$$

$$
=39.57 \mathrm{MP}
$$

c) $\tau_{\text {Below } C}=\frac{V Q_{C}}{I_{N H} t_{\text {Below } C}}$

$$
=\frac{\left(115 \times 10^{3} \mathrm{~N}\right)\left(10 \times 10^{-6} \mathrm{~m}^{3}\right)}{\left(0.3633 \times 10^{-6} \mathrm{~m}^{4}\right)(2 \times 0.01 \mathrm{~m})} 2
$$

$$
=158.27 \mathrm{MP}
$$

d) Shear Stress distribution;

