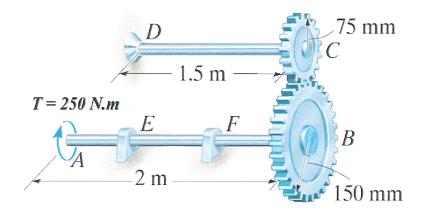


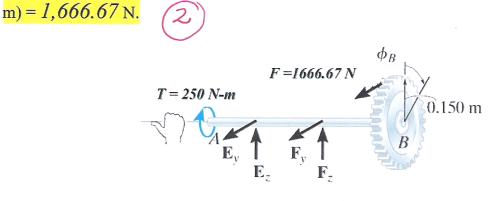
King Fahd University of Petroleum & Minerals

DEPARTMENT OF CIVIL ENGINEERING Second Semester 1432-33 / 2011-12 (112)

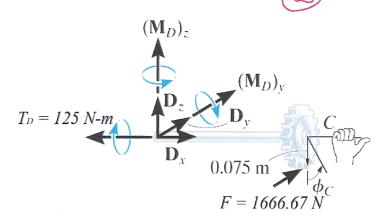

CE 203 STRUCTURAL MECHANICS I Major Exam 2

KEY SOLUTION

Problem	Prepared by
1	Altayyib
2	Dulaijan
3	Ghadib
4	S Ghamdi
5	Suwaiyan
Remarks	



In the assembly shown below, determine the maximum shear stress in shaft AB and shaft CD. Also, determine the angle of twist of gear B and the angle of twist of end A. Note that shaft AB has a diameter of 30 mm and shaft CD has a diameter of 25 mm. E and F are smooth bearings. G = 75 GPa.



Solution:

From the *FBD* of shaft *AB*, the tangential force between the gears is F = (250 N-m)/(0.15 N-m)/(0.1

Summing moment about the x-axis of shaft DC, the force F = 1,666.67 N creates the torque react at the fixed end D; $T_D = (1,666.67 \text{ N})(0.075 \text{ m})$.

Maximum shear stress due to an applied torque; $\tau_{max} = TC/J$

Shaft AB:
$$T_{AB} = 250 \text{ N-m}, C = (30/2) \text{ mm} = 0.0125 \text{ m},$$

 $J_{AB} = (\pi/2)xc^4 = (\pi/2)x(0.015)^4 = 7.952x10^{-8} \text{ m}^4$
 $(\tau_{max})_{AB} = (250 \text{ N-m})(0.015 \text{ m})/(7.952x10^{-8} \text{ m}^4) = 47.158 \text{ MPa}$

Shaft DC:
$$T_{\rm DC} = 125 \text{ N-m}, \ C = (25/2) \text{ mm} = 0.0125 \text{ m},$$

 $J_{\rm DC} = (\pi/2) \text{x} c^4 = (\pi/2) \text{x} (0.0125)^4 = 3.835 \text{x} 10^{-8} \text{ m}^4$
 $(\tau_{max})_{2c} = (125 \text{ N-m})(0.0125 \text{ m})/(3.835 \text{x} 10^{-8} \text{ m}^4) = 40.743 \text{ MPa}$

Angle of Twist:
$$\Phi = TL/JG$$

We first determine the angle of twist at gear C due to $T_{\rm DC} = 125$ N-m, in shaft DC;

$$\Phi_C = T_{DC} L_{DC} / J_{DC} G$$

= [(125 N-m)(1.5 m)]/[(3.835x10⁻⁸ m⁴)(75x10⁹ N/m²)]
= 0.06519 Rad

The rotation Φ_C of gear C causes gear B to rotate Φ_B ;

$$\Phi_B(0.15 \text{ m}) = \Phi_C(0.075 \text{ m})$$

$$\Phi_B = \Phi_C(0.075 \text{ m})/(0.15 \text{ m})$$

$$= (0.06519 \text{ Rad}) (0.075 \text{ m})/(0.15 \text{ m})$$

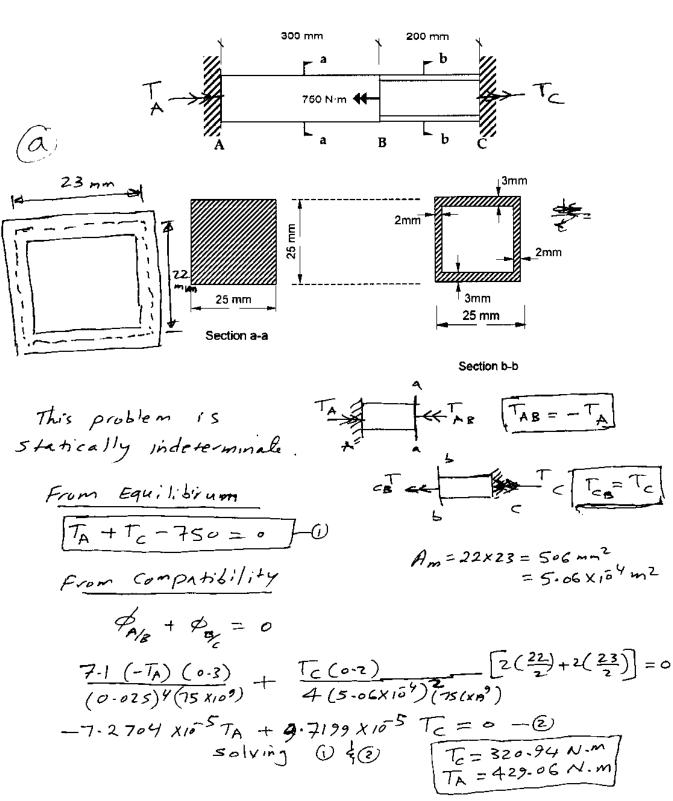
$$= +0.0326 \text{ Rad}$$

The angle of twist of end A with respect to end B caused by the 250 N-m torque;

$$\Phi_{A/B} = T_{AB}L_{AB}/J_{AB}G$$

= [(250 N-m)(2.0 m)]/[(7.952x10⁻⁸ m⁴)(75x10⁹ N/m²)]
= +0.08384 Rad

The rotation of end A is therefore the sum of Φ_B and $\Phi_{A/B}$;

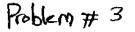

$$\Phi_A = \Phi_B + \Phi_{A/B} = +0.0326 \text{ Rad } +0.08384 \text{ Rad}$$

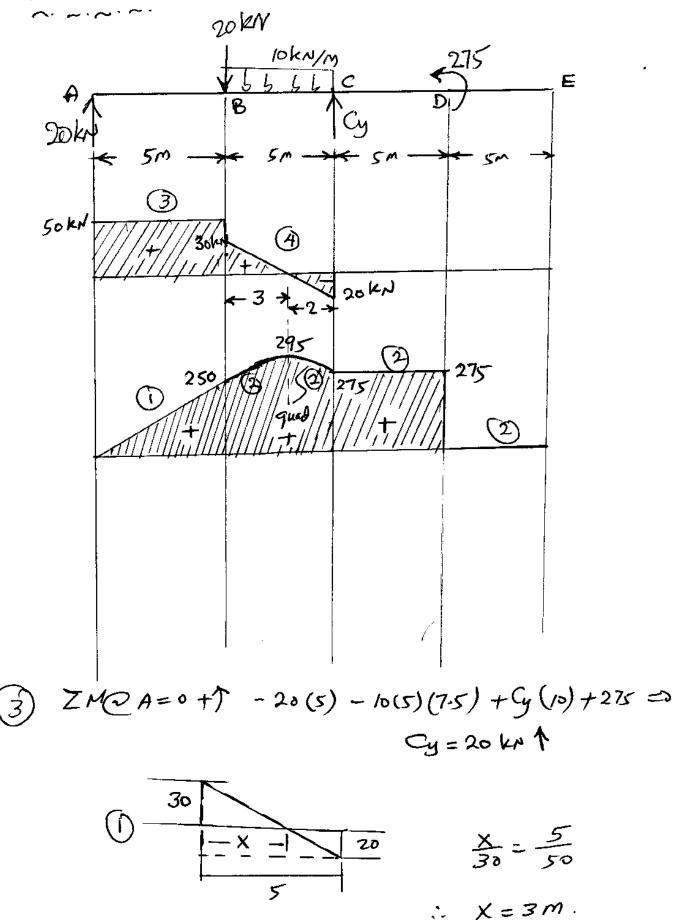
= +0.1164 Rad 2

Problem #2

The shaft is made from two segments: AB is a solid section, and BC is a thin tube.

- a) Determine the maximum shear stress in the whole shaft and indicate its location.
- b) Determine the angle of twist of B.

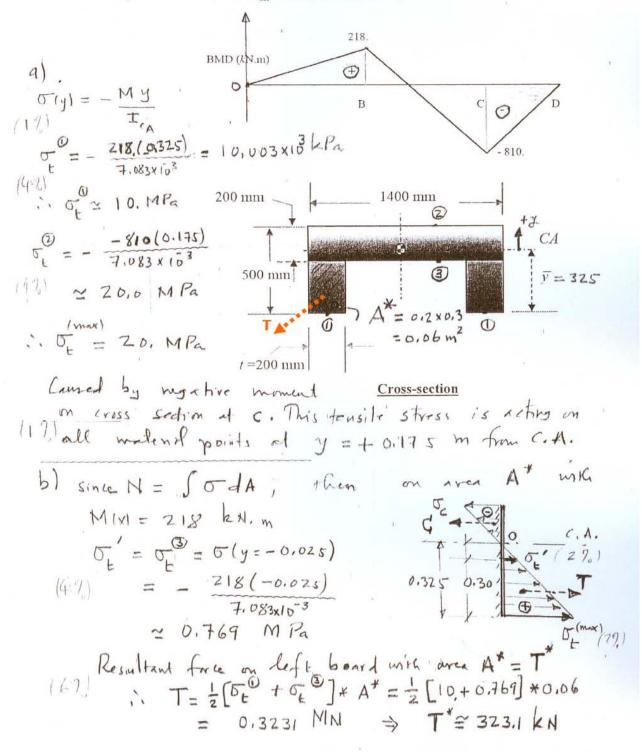

G_{steel} = 75 GPa



 \mathbf{L}

 $\phi_{\mathcal{B}} = \phi_{\mathcal{A}|\mathcal{B}} = \phi_{\mathcal{B}|\mathcal{C}}$

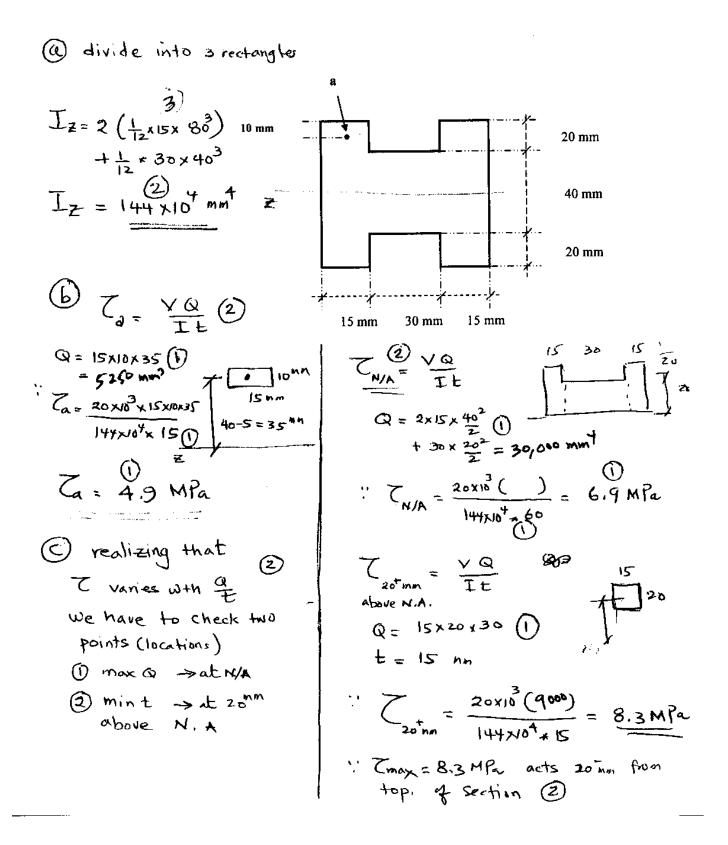
 $\mathcal{A}_{A|B} = \frac{7 \cdot 1 (429.06)(0.3)}{(.025)^4 (75 \times 10^3)} = 0.0312 \text{ rad}$


O mailes distribution

Problem # 4 Key Solution

The beam ABCD shown has a cross-section that is composed of two identical vertical boards and one horizontal board (all with common thickness t = 200 mm) and has the given bending moment diagram.

- a) Compute the maximum tensile stress σ_t and *clearly* specify its location in the beam.
- b) Compute the resultant force on the left vertical board at the location of maximum positive moment.


Given: $\bar{v} = 325$ mm; and $I_{C4} = 7.083 \times 10^{-3} \text{ m}^4$

Problem # 5

The beam with the shown cross-section is subjected to a vertical shear force of 20 kN.

- a) Determine the moment of inertia about the neutral axis.
- b) Determine the shear stress at point a.
- c) Determine the maximum shear stress and indicate where it acts.

