بسم الله الرممن الرحيم
Zaing yfabd $\mathfrak{Z n i b e r s i t y ~ o f ~}$ 羽etroleum \& flinerals
DEPARTMENT OF CIVIL ENGINEERING
Second Semester 1431-32 / 2010-11 (102)
CE 203 STRUCTURAL MECHANICS I
Major Exam I
Tuesday, March 29, 2011 7:00-9:30 P.M.

CIRCLE YOUR COURSE--SECTION NO.							
Section \#	$1 \& 2$	3	4	5	$6 \& 7$	8	
Instructor	Altayyib	Dulaijan	Ghamdi	Suwaiyan	Khathlan	Ahmad	

Summary of Scores		
Problem	Full Mark	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	
Remarks		

Notes:

1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
2. Write clearly and show all calculations, FBDs, and units.

Problem \# 1

Rigid member $A B C$, which is supported as shown, is subjected to a load P. If the diameter of the pin at C is 20 mm and the diameter of cable BD is 10 mm , determine the largest load P that can be applied.
Given: $\tau_{\text {fail }}$ in the pin at $C=240 \mathrm{MPa}$; $\sigma_{\text {fail }}$ in the cable $B D=300 \mathrm{MPa}$, factor of safety (F.S.) for both types of stresses is 3.0
The pin at C is in double shear

Figure 1

Free-body diagram

Applying equilibrium conditions to the above F.B.D, We have:

$$
\begin{aligned}
\sum \text { Mabout } C & =P \cos 40 \times(450+300)+P \sin 40 \times 375 \\
& -F_{B D} \sin 30 \times 300-F_{B D} \cos 30 \times 375=0 \\
& \Rightarrow F_{B D}=1.718 P
\end{aligned}
$$

$$
\Sigma F_{x}=0 \Rightarrow-P \sin 40+F_{B D} \cos 30-C_{x}=0
$$

$$
\Rightarrow C_{x}=P \sin 40-1.718 P \times \cos 30=0.845 \mathrm{P}
$$

$$
\begin{aligned}
\Sigma F_{y}=0 & \Rightarrow \overline{\bar{P} \cos 40+F_{B D} \sin 30+C y=0} x
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow C y & =P \cos 40-1.718 P \times \sin 30=-0.093 P \\
& =0.093 P(t)
\end{aligned}
$$

Shear force in pin at C,

$$
\hat{V}_{c}=\frac{1}{2}\left[\sqrt{(0.845 P)^{2}+(0.093 P)^{2}}\right]=0.425 P
$$

$$
\text { P.T.O. } \Rightarrow
$$

$$
\begin{aligned}
& \sigma_{\text {allow }}= \frac{\sigma_{\text {fail }}}{F_{. S}}=\frac{300}{3}=100 \mathrm{MPa} \\
& \tau_{\text {allow }}= \frac{\tau_{\text {fail }}}{F . S}=\frac{240}{3}=80 \mathrm{MPa} \\
& \sigma_{B D}= \frac{F_{B D}}{A_{B D}}=\frac{1.718 P}{\frac{\pi}{4}\left[10^{2}\right]}=0.02187 \mathrm{P}=\sigma_{\text {allow }} \\
& \Rightarrow 0.02187 P=100 \\
& \Rightarrow P=4572 \mathrm{~N} \\
& \tau_{c}=\frac{V_{c}}{A_{c}}=\frac{0.425 P}{\frac{\pi}{4}\left[20^{2}\right]}=1.3528 \times 10^{-3} P=\tau_{\text {allow }} \\
& \Rightarrow 1.3528 \times 10^{-3} \mathrm{P}=80 \\
& \Rightarrow P=59136 \mathrm{~N}
\end{aligned}
$$

Therefore, the largest load that can be safely applied at $A=4572 \mathrm{~N}$

Answer

Problem \# 2

The stress-strain diagram for an aluminum alloy that is used for making aircraft parts is shown below. A specimen having a gauge length of 300 mm and a diameter of 25 mm is stressed to 600 MPa . If Poisson's ratio, \boldsymbol{v}, for this material is 0.35 , determine the following:

1- The modulus of elasticity and the shear modulus.
2- The new length when the specimen is loaded.
3- The new diameter when the specimen is loaded.
4- The final length if the load is removed.

Stress-strain Diagram

Solution:

1. Modulus of elasticity:
$\mathrm{E}=\sigma / \varepsilon$ from the linear portion of the stress strain diagram.
Accordingly, $\mathrm{E}=300 \times 10^{6} / 0.004=75 \mathrm{GPa}$.
Shear modulus $\mathrm{G}=\mathrm{E} / 2(1+\mathrm{v}), \mathrm{G}=75 \times 10^{9} / 2(1+0.35)=27.78 \mathrm{GPa}$
2. If the material is loaded, the corresponding longitudinal strain is 0.024 $\mathrm{mm} / \mathrm{mm}$.
Change in length $\delta=0.024 \times 300=7.2 \mathrm{~mm}$.
New length $=300+7.2=307.2 \mathrm{~mm}$.
3. $\varepsilon_{\text {lat }}=-(0.35 \times 0.024)=-8.4 \times 10^{-3} \mathrm{~mm} / \mathrm{mm}$.

Change in diameter $=-8.4 \times 10^{-3} \times 25=0.21 \mathrm{~mm}$.
New diameter $=25-0.21=24.79 \mathrm{~mm}$.
4. If the load is removed, $\varepsilon_{\text {recovered }}=600 \times 10^{6} / 75 \times 10^{6}=8 \times 10^{-3} \mathrm{~mm} / \mathrm{mm}$.
$\varepsilon_{\text {permanent }}=0.024-8 \times 10^{-3}=0.016 \mathrm{~mm} / \mathrm{mm}$.
Change in length $\delta=0.016 x 300=4.8 \mathrm{~mm}$.
New length $=300+4.8=304.8 \mathrm{~mm}$.

Or from the graph by drawing a line parallel to linear portion of the stressstrain curve, this line will intersect the strain axis at approximately a strain ($\varepsilon_{\text {permanent }}$) $0.014 \mathrm{~mm} / \mathrm{mm}$. Accordingly,
Change in length $\delta=0.014 \mathrm{x} 300=4.2 \mathrm{~mm}$.
New length $=300+4.2=304.2 \mathrm{~mm}$.

Problem \# 3

A rigid plate (placed symmetrically atop three identical concrete posts) carries a load \boldsymbol{P} as shown in the set-up given. If with an initial gap $s=1 \mathrm{~mm}$, the set-up is also subjected to a temperature change $\Delta \mathrm{T}=-40^{\circ} \mathrm{C}$:

1. Determine the load \boldsymbol{P} just to close the gap.
2. Determine the axial strain in middle post (for the loading from part 1 and temperature conditions specified).
3. Determine the normal stresses in middle and right posts (for the loading from part 1 and temperature conditions specified).

Assume: $L=3 \mathrm{~m} ; \mathrm{A}_{\text {post }}=40 \times 10^{3} \mathrm{~mm}^{2} ; \mathrm{E}=30 \mathrm{GPa} ; \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

The three posts are designated as: 1, 3, and $\mathbf{2}$ (in the order shown on the Figure).

1) Force P (just to close gap):

$$
\begin{aligned}
& \Delta \mathrm{L}_{3}=\alpha \Delta \mathrm{T} \mathrm{~L}_{3}=12 \times 10^{-6}\left(-40^{\circ} \mathrm{C}\right)\left[3.0-1 \times 10^{-3}\right] \\
& =-1.4395 \times 10^{-3} \mathrm{~m} \text { (contraction) } \\
& \text { Modified } \mathrm{s}=\mathrm{s}^{\prime}=\mathrm{s}+\Delta \mathrm{L}_{3}=2.4395 \mathrm{~mm} \text {. }
\end{aligned}
$$

To just close gap s': the followings two conditions are to be satisfied
i) $\Delta \mathrm{L}_{1}=\Delta \mathrm{L}_{2}=\mathrm{s}$; and ii) $\mathrm{N}_{3}=0$.

Then: $\mathrm{s}^{\prime}=\alpha \Delta \mathrm{T} \mathrm{L}_{1}+\mathrm{NL}_{1} / \mathrm{AE}$ (all with same signs).
And $\mathrm{N}=\mathrm{AE} / \mathrm{L}\left[\mathrm{s}^{\prime}-\alpha \Delta \mathrm{T} \mathrm{L}_{1}\right]$
\because From FBD: $\mathrm{P}=\mathrm{N}_{1}+\mathrm{N}_{2}=2 \mathrm{~N}$ (due to symmetry).
$\mathbf{P}=\mathbf{2} \mathrm{N}$
$=\frac{2 \times 30 \times 10^{9} \times 40 \times 10^{-3}\left[2.4395 \times 10^{-3}-1.44 \times 10^{-3}\right]}{3.0}=799.6 \times 10^{3} \mathrm{~N}$
$\cong 0.800 \mathrm{MN}$

$$
\therefore \mathbf{P}=800 \cdot \mathrm{kN}
$$

2) Strain in middle post 3: $\varepsilon_{3}=$ only $\varepsilon_{\text {thermal }}=\alpha \Delta \mathrm{T}$

$$
\therefore \varepsilon_{3}=12 \times 10^{-6}\left(-40^{\circ} \mathrm{C}=-4.8 \times 10^{-4} \mathrm{~m} / \mathrm{m}\right.
$$

3) Stresses in the three posts:

Since only posts 1 and 2 carry the load \mathbf{P} (for the specified conditions with $\mathrm{N}_{3}=0$), then the stresses induced are:

$$
\sigma_{1}=\sigma_{2}=0.5 \mathrm{~N} / \mathrm{A}_{\text {post }}=\frac{0.5 \times 800 \mathrm{kN}}{\left(40 \times 10^{-3}\right) \mathrm{m}^{2}}=10 \mathrm{MPa}(\text { comp. }), \text { and } \sigma_{3}=0 .
$$

Problem \# 4
The two rods have an initial gap of 0.3 mm before the application of the given loads.
a) Show that the given problem is statically indeterminate.
b) Determine the support reaction at point E.
c) Determine the final length of rod DE.

For rod AC : $E=20 \mathrm{GPa}$, and $A=800 \mathrm{~mm}^{2}$
For rod DE : $E=40 \mathrm{GPa}$, and $A=400 \mathrm{~mm}^{2}$
a) Check 'f the gap will close
b)

$$
\begin{equation*}
R A \quad 20,000 \tag{BC}
\end{equation*}
$$

$$
R_{A}+R_{E}=180,000 \text { (1) }
$$

we need another eqn.

$$
\begin{aligned}
& \text { we need another eqn. } \\
& \begin{array}{l}
(\Delta l)_{t_{0} t}=0.3 \text {, or }(\Delta l)_{A B}+(\Delta l)_{B C}+(\Delta l)_{D E} \\
=0.3 \mathrm{~mm} \\
{\left[\frac{\left(180,000-R_{E}\right)(200)}{(20,000)(800)}\right]+\left[\frac{\left(20,000-R_{E}\right)(200)}{(20,000)(800)}\right]+\left[\frac{-R_{E}(350)}{(40,000)(1000)}\right]=0.3} \\
m m
\end{array}
\end{aligned}
$$

Solve for $R_{E}, R_{\epsilon}=+46933 \mathrm{~N}$
c) $(\Delta l)_{D E}=\frac{N L}{C A}=\frac{(-46933)(350)}{(40,000)(400)}=-1.0267 \mathrm{~mm}$

Final $L_{D E}=350+\Delta l=348.97 \mathrm{~mm}$

$$
\begin{aligned}
& \text { or not } \\
& (\Delta l)_{A C}=\frac{(160,000)(200)}{(20,000)(800)} \\
& =+2 \mathrm{~mm} \\
& (\Delta l)_{D E}=\frac{(-20,000)(350)}{(40,000)(400)}=-0.438 \mathrm{~mm} \quad .(\Delta l)_{t o t}=+1.56>\mathrm{gap} \\
& \text { - I. I. problem }
\end{aligned}
$$

Problem \# 5

A rigid material has a smooth rectangular cavity of dimensions ($\boldsymbol{a} \times \boldsymbol{b} \times \boldsymbol{h}$), 25 mm x $30 \mathrm{~mm} \times 90 \mathrm{~mm}$ engraved in it as shown below. The cavity is filled with a linearly elastic, isotropic material with modulus of elasticity, $E=2.5 \mathrm{GPa}$, and Poisson's ratio, $\boldsymbol{v}=0.40$, and compressed as shown in the figure by a rigid cap with a force \boldsymbol{P} acting on it. If $\boldsymbol{P}=70.8 \mathrm{kN}$, determine the decrease \boldsymbol{c} in the height h, and the change in volume $\boldsymbol{\Delta} \boldsymbol{V}$ of the material.

Solution:

This is a 3-D problem; however, no shearing strains occur in the material. Moreover, the only nonzero norma/Stran component is ϵ_{y}. The other strain components, ϵ_{x} and ϵ_{z} are zero because the rigid medium surrounding the cavity does not allow the expansion of the materid/in these directions. Thus

$$
\epsilon_{y}=\frac{c}{h} \text {, and } \epsilon_{x}=\epsilon_{z}=\gamma_{x y}=\gamma_{x z}=\gamma_{y z}=0
$$

Continue Solution:
Consider the normo/strain equations of the generalized Hook's how;

$$
\begin{aligned}
& \epsilon_{x}=\frac{1}{E}\left[\nabla_{x}-\nu\left(\sigma_{y}+V_{z}\right)\right] \\
& \epsilon_{y}=\frac{1}{E}\left[\sigma_{y}-\nu\left(\nabla_{x}+\nabla_{z}\right)\right] \\
& \epsilon_{z}=\frac{1}{E}\left[\nabla_{z}-\nu\left(\nabla_{x}+\sigma_{y}\right)\right]
\end{aligned}
$$

where, $V_{y}=P / A_{\text {cap }}=-70.8 \mathrm{kN} /\left(25 \mathrm{mmx} 30 \mathrm{max} / 10^{-6} \mathrm{~m}^{2} / \mathrm{mm}^{2}\right)$

$$
=-94.4 \mathrm{MP}
$$

and $\epsilon_{x}=\epsilon_{2}=0$
Substituting; $\quad 0=\frac{1}{2.5 G P_{2}}\left[V_{x}-0.4\left(-94.4+V_{z}\right)\right](1)$

$$
\begin{aligned}
-\frac{c}{0.09 m} & =\frac{2.5 G R}{2.5 G R}\left[-94.4-0.4\left(\sigma_{x}+F_{z}\right)\right](0) \\
0 & =\frac{1}{2.5 G R_{2}}\left[\sigma_{z}-0.4\left(\sigma_{x}-94.4\right)\right](3)
\end{aligned}
$$

Subtracting Eg (B) from Eq (D);
We get; $\sqrt{x}=\frac{0}{z}$
and solving for $\sigma_{x}=\sigma_{z}=-62.933 \mathrm{MP}$
Substituting in Eq (2) and Solving for c;

$$
\begin{aligned}
-C & =\frac{0.09 \mathrm{~m}}{2.59 B}[-94.4+0.4(62.933+62.933)] \mathrm{MP} \\
C & =1.586 \times 10^{-3} \mathrm{~m} \\
C & =1.586 \mathrm{~mm}
\end{aligned}
$$

The Change in Volume of the material;

$$
\begin{aligned}
\Delta V & =-(25 \times 30 \times 90)+(25 \times 30)(90-1.586) \\
& =-1.189 .5 \mathrm{~mm}^{3}
\end{aligned}
$$

