CE 203 (112) KEY SOLUTION EXAM 1

PROBLEM	FACULTY
$\mathbf{1}$	ALTAYYIB
$\mathbf{2}$	ALTAYYIB
$\mathbf{3}$	S. AL-GHAMDI
$\mathbf{4}$	AL-SUWAIYAN
$\mathbf{5}$	AL-KHATHLAN

Problem \# 1

The beam is supported by a pin at A and link BC. Determine:
a) the average shear stresses in the pins at A and B,
b) the average normal stress in link $B C$,
c) the bearing stress between pin C and the link.

All pins have a diameter of $\mathbf{2 0} \mathbf{~ m m}$

Thickness of link BC $=\mathbf{3 0} \mathbf{~ m m}$

Solution:

(a)

Referring to the FBD of member AB in Figure (a),

$$
\begin{array}{cc}
\checkmark+\sum M_{\mathrm{A}}=0 ; & (45 \mathrm{kN} / \mathrm{m} \times 4 \mathrm{~m})(4 \mathrm{~m} / 2)-\left(F_{\mathrm{BC}} \sin 60^{\circ}\right)(4 \mathrm{~m})=0 \\
F_{\mathrm{BC}}= & 90 / \sin 60^{\circ}=\underline{103.923 \mathrm{kN}} \\
د^{+} \sum F_{\mathrm{x}}=0 ; & -A \mathrm{x}+F_{\mathrm{BC}} \cos 60^{\circ}=0 \\
A \mathrm{x}=\underline{51.962 \mathrm{kN}} \\
\uparrow+\sum F_{\mathrm{y}}=0 ; & A \mathrm{y}+F_{\mathrm{BC}} \cos 60^{\circ}-(45 \mathrm{kN} / \mathrm{m})(4 \mathrm{~m})=0 \\
& A \mathrm{y}=\underline{90.000 \mathrm{kN}}
\end{array}
$$

Thus the force acting on pin A is

$$
\begin{gathered}
F_{\mathrm{A}}=\sqrt{(A \mathrm{x})^{2}+(A \mathrm{y})^{2}}=\sqrt{\left(\underline{51.962 \mathrm{kN})^{2}+(90.000 \mathrm{kN})^{2}}\right.} \\
F_{\mathrm{A}}=103.923 \mathrm{kN}
\end{gathered}
$$

Pin A is subjected to single shear, Figure (b), while pin B is subjected to double shear, Figure (C),

$$
\begin{aligned}
& \text { (C) } \quad \text { while } V_{\mathrm{B}}=F_{\mathrm{BC}} / 2=103.923 / 2=\underline{51.962 \mathrm{kN}} \\
& V_{\mathrm{A}}=F_{\mathrm{A}}=103.923 \mathrm{kN} \text { (b) } \\
& \left(\tau_{A}\right)_{\text {average }}=V_{\mathrm{A}} / A \quad=103.923 \mathrm{kN} /\left(\pi x 0.01^{2}\right) \mathrm{m}^{2}=103.923 \mathrm{kN} \\
& \underline{330.797 \mathrm{MPa}}
\end{aligned}
$$

$$
\left(\tau_{\mathrm{B}}\right)_{\text {average }}=V_{\mathrm{B}} / A=51.962 \mathrm{kN} /\left(\pi x 0.01^{2}\right) \mathrm{m}^{2}=165.400 \mathrm{MPa}
$$

Cross sectional area of the link $B C$ is $30 \mathrm{~mm} \times 80 \mathrm{~mm}=2400 \mathrm{~mm}^{2}=2.4 \times 10^{-3} \mathrm{~m}^{2}$

$$
\left(\sigma_{\mathrm{BC}}\right)_{\text {average }}=F_{\mathrm{BC}} / A=103.923 \mathrm{kN} / 2.4 \times 10^{-3} \mathrm{~m}^{2}=43.301 \mathrm{MPa}
$$

Referring to the FBD of a section through point C in link BC, Figure (d),

$$
F_{\mathrm{C}}=F_{\mathrm{BC}}=103.923 \mathrm{kN}
$$

$$
\mathrm{A}_{\text {bearing }}=30 \mathrm{~mm} \times 20 \mathrm{~mm}=600 \mathrm{~mm}^{2}=0.6 \times 10^{-3} \mathrm{~m}^{2}
$$

$$
\left(\sigma_{\text {bearing }}\right)_{\mathrm{BC}}=F_{\mathrm{C}} / A_{\text {bearing }}=103.923 \mathrm{kN} / 0.6 \times 10^{-3} \mathrm{~m}^{2}=173.205 \mathrm{MPa}
$$

Problem \# 2

The rigid pipe is supported by a pin at C and wire $A B$. The pin has a diameter of 20 mm while the wire has a diameter of 10 mm . If the allowable normal stress for the wire is $\boldsymbol{\sigma}_{\text {allow }}=255$ MPa and the allowable shear stress for the pin is $\boldsymbol{\tau}_{\text {allow }}=131 \mathrm{MPa}$, determine:
a) the maximum \boldsymbol{P} that can be applied to the assembly,
b) the increase in length and reduction in diameter of wire $A B$.

Use $\mathrm{E}=70 \mathrm{GPa}$ and $\boldsymbol{v}=\mathbf{0 . 3 5}$.

Detail of connection at C

Solution:

Referring to the FBD of the rigid pipe BC, Figure below;

$\gamma+\sum M_{\mathrm{A}}=0$

$$
\left(F_{\mathrm{AB}} \sin 30^{\circ}\right)(2.4 \mathrm{~m})-P(2.4 \mathrm{~m})=0,
$$

$$
F_{\mathrm{AB}}=P / \sin 30^{\circ}=\underline{2 P}
$$

$$
\Delta+\sum F_{\mathrm{x}}=0 ;
$$

$$
-F_{\mathrm{AB}} \sin 30^{\circ}+P-C_{\mathrm{x}}=0,
$$

$$
C_{\mathrm{x}}=P-F_{\mathrm{AB}} \sin 30^{\circ}
$$

$$
C_{x}=P-\left(P / \sin 30^{\circ}\right) \sin 30^{\circ}=\underline{0}
$$

$+\sum F_{\mathrm{y}}=0$;

$$
\begin{aligned}
& C y-F_{\mathrm{AB}} \cos 30^{\circ}=0, \\
& C y-\left(P / \sin 30^{\circ}\right) \cos 30^{\circ}=0 \\
& C y=\underline{1.732 P}
\end{aligned}
$$

The stress in the guy wire $\boldsymbol{\sigma}_{A B}=\boldsymbol{\sigma}_{\text {allow }}=255 \mathrm{MPa}=F_{\mathrm{AB}} / A_{\text {guy wire }}=2 P / \pi(0.005 \mathrm{~m})^{2}$

$$
\begin{aligned}
P & =\left(255 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)\left[\pi(0.005 \mathrm{~m})^{2}\right] / 2 \\
& =\underline{10.014 \mathrm{kN}}
\end{aligned}
$$

Pin C is subjected to a double- shear action by the reaction at C_{i}

$$
\begin{gathered}
F_{\mathrm{C}}=C_{\mathrm{y}} / 2=1.732 P / 2 \\
\boldsymbol{\tau}_{\text {pin } \mathrm{C}}=\boldsymbol{\tau}_{\text {allow }}=131 \mathrm{MPa}=F_{\mathrm{C}} / A_{\text {pin } \mathrm{C}}=1.732 P / 2\left[\pi(0.01 m)^{2}\right] \\
P=\left(131 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}\right)(2)\left[\pi(0.01 \mathrm{~m})^{2}\right] / 1.732 \\
=47.523 \mathrm{kN}
\end{gathered}
$$

Therefore, $\boldsymbol{P}_{\text {max }}$ should not exceed 10.014 kN

$$
\boldsymbol{P}_{\max }=10.014 \mathrm{kN}
$$

The axial force in the guy wire $A B$ is $F_{\mathrm{AB}}=2 P=20.028 \mathrm{kN}$, but $\sigma_{A B}=E \varepsilon_{\mathrm{AB}}$, where $\varepsilon_{\mathrm{AB}}=$ $\boldsymbol{\Delta}_{\mathrm{AB}} / L_{\mathrm{AB}}$, and $\boldsymbol{\sigma}_{\mathrm{AB}}=F_{\mathrm{AB}} / A_{\text {guy wire }}$ or

$$
F_{\mathrm{AB}} / A_{\text {guy wire }}=E\left(\boldsymbol{\Delta}_{\mathrm{AB}} / L_{\mathrm{AB}}\right)
$$

The stretch in the guy wire $A B$ is

$$
\begin{array}{r}
\boldsymbol{\Delta}_{\mathrm{AB}}=\left(F_{\mathrm{AB}} L_{\mathrm{AB}} / A_{\text {guy wire }} E\right)=\left[2 P /\left(A_{\text {guy wire } \mathrm{X}} E\right)\right] L_{\mathrm{AB}} \\
\boldsymbol{\Delta}_{\mathrm{AB}}=\left\{20.028 \mathrm{kN} /\left[\pi(0.005 m)^{2} \times 70 x(10)^{6} \mathrm{kN} / m^{2}\right\}\left(2.4 \mathrm{~m} / \cos 30^{\circ}\right)\right. \\
\underline{\boldsymbol{\Delta}}_{\mathrm{AB}}=10.42 \times 10^{-3} \mathrm{~m}
\end{array}
$$

Poisson's Ratio;

$$
\boldsymbol{v}=\varepsilon_{\text {Radial }} / \boldsymbol{\varepsilon}_{\mathrm{AB}}=0.35
$$

$$
\boldsymbol{\varepsilon}_{\text {Radial }}=-0.35 \times \boldsymbol{\varepsilon}_{\mathrm{AB}}=0.35 \times 3.643 \times 10^{-3}=-1.2754 \times 10^{-3}
$$

The reduction in the diameter is therefore.

$$
\Delta_{\text {Radia }}=\left(-1.275 \times 10^{-3}\right)(10 \mathrm{~mm})=-12.75 \times 10^{-3} \mathrm{~mm}
$$

Rod ABC has a negligible mass and only supports two axial loads P and 21 P as shown. If only part AB is subjected to a temperature change $\Delta \mathrm{T}=40{ }^{\circ} \mathrm{C}$; determine:
a) the required value of \mathbf{P} if the total length ABC remains constant,
b) the displacement δ_{B} of point B ,
c) the relative displacement $\delta_{\mathrm{B} / \mathrm{C}}$.
d) the final length of $\operatorname{rod} A B$.

Given $E=70 \mathrm{GPa}$ and $\alpha=24 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { iiven } \mathrm{E}=70 \mathrm{GPa} \text { and } \alpha=24 \times 10^{-6} /{ }^{\circ} \mathrm{C} . \\
& N_{1}=+P \quad(\pi) ; N_{2}=A_{y} ; \quad P-21 P-A_{y}=0 \Rightarrow N_{2}=20 \mathrm{P}(\mathrm{C})
\end{aligned}
$$

18

$$
\begin{aligned}
& \quad(\Delta l)_{A B}^{\mathrm{HFH}}+(\Delta l)_{B C}^{\text {br t }}=0 \\
& N_{1} l_{1} / E A_{1}+N_{2} l_{2} / E A_{2}+\alpha l_{2} \Delta T=0 \\
& \frac{P(0.40)}{A_{1}}-\frac{20 P(0.60)}{A_{2}}+\alpha E l_{2} \Delta T=0 \\
& A_{1}=3.1416 \times 10^{-4} \mathrm{~m}^{2} \\
& A_{2}=1.2566 \times 10^{-3} \mathrm{~m}^{2} \\
& \alpha E l_{2} \Delta T=4.032 \times 10^{7} \mathrm{~N} / \mathrm{m} \quad 0.4 \mathrm{~m} \\
& 1.2732 \times 10^{3} \mathrm{P}-9.5496 \times 10^{3} \mathrm{P}=-4.032 \times 10^{4} \mathrm{~B}
\end{aligned}
$$

$$
\therefore \quad P=4.872 \mathrm{kN}
$$

(5) b)

$$
\delta_{B}=\delta_{A}+\left(\delta_{B / A}\right)^{10 t}
$$

$$
\begin{aligned}
& =A_{A}(13 / A) \\
& 0+\alpha l_{2} T+\frac{N_{2} l_{2}}{A_{2} E} \\
& -4
\end{aligned}
$$

$$
=5.76 \times 10^{-4}-\frac{20 \times 4.872 \times 0.6}{1.2566 \times 10^{-3} \times 70 \times 10^{6}} \mathcal{F}_{\mathrm{A}}
$$

$$
\begin{aligned}
& =5,76 \times 10-1.2566 \times 10^{-3} \times 70 \times 1 \\
& =5,76 \times 10^{-4}-6.6465 \times 10^{-4} \\
& =5
\end{aligned}
$$

$$
\begin{aligned}
& =5.76 \times 10^{-4}-6.6465 \times 10^{-4} \\
& =-8.8651 \times 10^{-5} \mathrm{~m} \Rightarrow \therefore \delta_{13} \cong 0.0887 \mathrm{~mm}(\text { (b) }
\end{aligned}
$$

(4) c)

$$
\begin{aligned}
= & -8.8651 \times 10 \\
\text { c) } \delta_{B / C} & =(\Delta l)_{B C}^{\text {tor }}=N_{1} P_{1} / A_{1} E=\frac{1.2732 \times 10^{3} P}{E} \\
& =8.862 \times 10^{-5} \mathrm{~m}
\end{aligned}
$$

$$
=8.862 \times 10^{-5} \mathrm{~m}
$$

(3) d)

$$
\text { d) } \begin{aligned}
\left(L_{A B}\right)_{f} & =\left(L_{A B}\right)_{0}+(\Delta P)_{A B}^{\text {bHt }}=0.6+\delta_{B / A} \\
& =0.59991 \mathrm{~m}
\end{aligned}
$$

Problem \# 4

The rigid member $A B C D$ is supported by a pin at B and two cables.
a) Calculate the stresses in the cables due to the application of the shown force.
b) Calculate the vertical displacement of point D.
c) In one sentence, explain what will happen to the stresses in the cables if the temperature of the steel cable only is increased.

Cable	Length	Area $\left(\mathrm{mm}^{2}\right)$	Material	E (GPa)
AF	1.5 m	315	Steel	200
CE	1 m	600	Aluminum	70

Geometry ffer deformation

Displacement of point D using figure

$$
\begin{align*}
\frac{\Delta_{D}}{3} & =\frac{\Delta a l}{2} \\
\because \Delta_{D} & =1.5 \Delta a l \\
& =1.5 \frac{\mathrm{Fal} A_{a l}}{A_{a l} E_{a l}} \\
& =1.5 \frac{(84)(1000)}{(600)(270)} \\
\Delta_{D} & =3 \mathrm{~mm} \tag{i}
\end{align*}
$$

$$
C \sum M_{B}=0
$$

$$
\begin{equation*}
-F_{5+}(1)-F_{a 1}(2)+70(3)=0 \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
F_{S+}+2 F_{a l}=210 \tag{1}
\end{equation*}
$$

(statically indetermixfe)
compatibility (2)

$$
\begin{aligned}
& \frac{\Delta_{s t}}{1}=\frac{\Delta a l}{2} \\
& \Delta_{a l}=2 \Delta_{s+}
\end{aligned}
$$

put interms of forces

$$
\begin{aligned}
& \frac{F_{a l} L_{a l}}{A_{a l} E_{a l}}=2 \frac{F_{s+} L_{s+}}{A_{s+}+E_{s+}} \\
& F_{a l}=2 F_{s+}
\end{aligned}
$$

Solving (1) \&े (2) we get

$$
F_{S t}=42^{k N} ; F_{a l}=84^{k N}
$$

$$
\begin{align*}
& \sigma_{s t}=\frac{F_{s t}}{A_{s 1}}=\frac{42 \times 10^{3}}{315}=133 \mathrm{MPa} \\
& \sigma_{a l}=\frac{84 \times 10^{3}}{600}=140 \mathrm{MPa} \tag{1}
\end{align*}
$$

If sted temp is increused Gsteel will decrease TAlum will increase

Block \boldsymbol{A} rests on block \boldsymbol{B} as shown. Each block is a cube with initial dimensions $200 \times 200 \times 200 \mathrm{~mm}$. The 4 side-faces of block \boldsymbol{A} are free to displace, while the 4 side-faces of block \boldsymbol{B} are prevented from expanding (i.e. restrained in the \boldsymbol{x} and \boldsymbol{y} directions). Determine:
a) the vertical displacement of the force F,
b) the stress σ_{x} for block \boldsymbol{A} and for block \boldsymbol{B},
c) the value of the Shear Modulus (\boldsymbol{G}) for block \boldsymbol{A}.

Ignore self-weight and any friction.

$$
E=10 \mathrm{GPa}, \text { and } v=0.2
$$

a)

For block $A \quad \sigma_{z}=\frac{-400,000}{(200)(200)}=-10 \mathrm{MPa}$
sides ore free, so can be considered amaxial rod

For block $B, 4$ sides ore restrained, x,

$$
\sigma_{z}=-10 \mathrm{MPa}, \sigma_{x}=?, \sigma_{y} \bar{F} ?, \epsilon_{x}=\epsilon_{y}=0, \epsilon_{z}=?
$$ using $\epsilon_{y}=0 \rightarrow \sigma_{y}-2 \sigma_{x}-(-2)(-10)=0$ solve fora

For block $B, \sigma_{x}=\sigma_{y}=-2.5 \mathrm{MPa}, \epsilon_{z}=\frac{1}{10,000}[-10-(.2)(-5)]$

$$
\epsilon_{z}=-9 \times 10^{-4} \rightarrow 500(\Delta h)_{B}=\left(\epsilon_{z}\right)(200)=-0.18 \mathrm{~mm}
$$

Displacement Force $=(\Delta h)_{A}+(\Delta h)_{B}=-.2-.18=-0.38=0.38 \mathrm{~mm}$
b) For Block A : $\sigma_{x}=O$ (free sides), Block $B: \sigma_{x}=2.5 \mathrm{MPa}(c)$ (from above)
c) $G=\frac{E}{2(1+v)}=\frac{10 G P_{a}}{2(1+2)}=4.167 G P_{a}$ Ans

