بسم اللة الرمحن الرحيم
 登ing fyaho denibersity of 非etroleum \& flinerals DEPARTMENT OF CIVIL ENGINEERING
 Semester 132

 CE 203 STRUCTURAL MECHANICS I

 CE 203 STRUCTURAL MECHANICS I Major Exam I

 Major Exam I}

Saturday, April 5, 2014 7:00-9:00 P.M.

KEY SOLUTION

Note to Students

Even though the course is not "standard grading", being around the average does not indicate C performance, since there is a minimum amount of course comprehension needed to pass the course satisfactorily, irrespective of the exam average and the performance of other students.
Therefore, students who did poorly in this exam should do double effort in the remaining of the semester to avoid disappointing grade.

After reviewing the key solution and still having a concern about your mark, you may consult with the faculty members who prepared, solved, and graded each problem.

The deadline for review is Thursday April 17, 2014.

Problem	Solved \& Graded by
$\mathbf{1}$	Dr. Mohammad Al-Osta
$\mathbf{2}$	Dr. Abdulrahman Khathlan
$\mathbf{3}$	Dr. Abdulrahman Khathlan
$\mathbf{4}$	Dr. Shamshad Ahmad

Notes:

1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
2. Write clearly and show all calculations, FBDs, and units.

CE 203

For the frame (shown in figure below) determine the following:
(a) The intensity \boldsymbol{W} of the maximum distributed load that can be applied to member $\mathbf{A B}$, if:

- the failure shear stress for the pins at A and C is $\left(\tau_{\text {fail }}\right)=200 \mathrm{MPa}$, a factor of safety of F.S. $=1.5$ and the diameter of the pins at A and C is 22 mm ; and
- the failure bearing stress for the assembly at A and C is $\left(\sigma_{\mathrm{b}}\right)_{\text {fail }}=$ 400 MPa and a factor of safety of F.S. = 1.8.
(b) Use the distributed load \boldsymbol{W} in part (a) to find the smallest diameter of the pin at B if allowable shear stress $\left(\boldsymbol{\tau}_{\text {allow }}\right)=\mathbf{8 0} \mathbf{~ M P a}$.

Solution:

(a) The intensity \boldsymbol{W} of the maximum distributed load that can be applied to member AB

The support reactions at A and C .
Member AB
$\Gamma+\sum \mathrm{M}_{A}=0$

F.B.D (Member AB)
$\mathrm{F}_{B C} \times 3.0 \times \sin 45-3 \mathrm{~W} \times 1.5=0 ; \quad \mathrm{F}_{B C}=2.121 \mathrm{~W}$
$+\uparrow \sum \mathrm{Fy}=0$
$-3 \mathrm{~W}+\mathrm{F}_{B C} \times \sin 45+A \mathrm{y}=0 ; \quad A \mathrm{y}=1.5 \mathrm{~W} \uparrow$
$+\rightarrow \sum \mathrm{Fx}=0$
$\mathrm{F}_{B C} \times \cos 45-A \mathrm{x}=0 ; \quad A \mathrm{x}=1.5 \mathrm{~W} \leftarrow$
Member BC
F.B.D (Member BC)
$+\sum \mathrm{F}=0$
$-\mathrm{F}_{B C}+\mathrm{F}_{C B}=0 ; \quad \mathrm{F}_{C B}=2.121 \mathrm{~W}$
Res. forces:
$\mathrm{F}_{A}=\sqrt{\mathrm{A}_{y}^{2}+\mathrm{A}_{x}^{2}}=\sqrt{(1.5 \mathrm{~W})^{2}+(1.5 \mathrm{~W})^{2}}=2.121 \mathrm{~W}$
Find W from Shear:

Force @ v pin A = Force @ pin C = 2.121W

$\tau_{\text {all }}=\frac{\tau_{\text {fail }}}{F . S .}=\frac{200}{1.5}=133.333 \mathrm{MPa}$
$\left(\sigma_{b}\right)_{\text {all }}=\frac{\left(\sigma_{b}\right)_{\text {fail }}}{F . S .}=\frac{400}{1.8}=222.222 \mathrm{MPa}$
At Pins single shear:
$\mathrm{A}=\frac{\pi \mathrm{d}^{2}}{4}=\frac{\pi 22^{2}}{4}=380.133 \mathrm{~mm}^{2}$
$\tau=\frac{V}{A} \quad \Rightarrow>133.33=\frac{2.121 \mathrm{~W} * 1000}{380.133} \quad=\Rightarrow>W=23.896 \frac{\mathrm{kN}}{\mathrm{m}}$
Find W from bearing:
Force @ pin $A=$ Force @ pin C = 2.121W
$\left(\sigma_{b}\right)_{\text {all }}=\frac{\left(\sigma_{b}\right)_{\text {fail }}}{F . S .}=\frac{400}{1.8}=222.222 \mathrm{MPa}$
$A_{\text {min }}=t d=20(22)=440 \mathrm{~mm}^{2}$
$\sigma=\frac{V}{A} \quad \Rightarrow \quad 222.2222=\frac{2.121 \mathrm{~W} * 1000}{440}=\Rightarrow>W=46.1 \frac{\mathrm{kN}}{\mathrm{m}}$
From Eqs. (1) and (2) Take $W=23.896 \frac{\mathrm{kN}}{\mathrm{m}}$
(b) Use the distributed load \boldsymbol{W} in part (a) to find the smallest diameter of the pin at B if allowable shear stress ($\tau_{\text {allow }}$) $\mathbf{= 8 0} \mathbf{~ M P a}$.

Force @ pin B = 2.121W
Double shear :
$\mathrm{V}=2.121 \mathrm{~W} / 2=2.121 * 23.896 / 2=25.342 \mathrm{kN}$
$\tau=\frac{V}{A} \quad \Rightarrow>80=\frac{25.342 * 1000}{\frac{\pi \mathrm{~d}^{2}}{4}}=\Rightarrow \gg d=20.08 \mathrm{~mm}$

A circular rod sits inside a circular tube as shown in the figure. Both rods are made of the same material and both are fixed to the floor. The temperature of the tube only is increased by (ΔT).

Determine the value of (ΔT) needed to produce a normal stress in the tube equal to 10 MPa . $\mathbf{E}=10 \mathrm{GPa}, \quad \alpha=40 \times 10^{-6} /{ }^{\circ} \mathrm{C}$

Because there is stress in the tribe, then definitely, the gap has clored and the tube began pulling the cylinder

From the F.B.D. \& $\Sigma F_{y}=0$ F is the same in both rods, but opposite direction

Compatibility En

plate before ΔT

$$
A_{\text {tube }}=\pi\left(50^{2}-40^{2}\right)=900 \pi \mathrm{~m}^{2}
$$

$$
\begin{aligned}
& A_{\text {tube }}=\pi(50-40)=\pi(30)^{2}=200 \pi \mathrm{~mm}^{1} \\
& A_{c y j}=
\end{aligned}
$$

$$
\text { using } \sigma_{\text {tab }}=10 \mathrm{MPa}
$$

$$
\begin{aligned}
& (\Delta l)_{\text {tube }}=(\Delta l)_{C y l}+1 \mathrm{~mm} \\
& (\alpha l \Delta T)-\frac{(F)(258)}{(10,000) A_{+u}}=\frac{(F)(251)}{(10,000) A_{c y}}+1 \\
& \left(40 \times 10^{-6}\right)(250) \Delta T-.25=.251+1 \\
& .01 \Delta T=1.501 \\
& \Delta T=+150.1^{\circ} \mathrm{C}
\end{aligned}
$$

$$
F=(\sigma \vee A .)=(10)(900 \pi)=28274
$$

Problem 3: (20 points)
Rigid beam $A B$ is supported using two rods $C D$ and $E F$ as shown.
Determine the magnitude and direction of the horizontal displacement of point A.
For the rods : $\mathbf{E}=100 \mathrm{GPa}$, and Area $=100 \mathrm{~mm}^{2}$

+ means that the assumed direction is correct

$(\Delta l)_{E F}=+0.15 \mathrm{~mm}$

$$
(\Delta l)_{E F}=\frac{N l}{E A}=\frac{(1500)(1000)}{(100,000)(100)}
$$

$$
(\Delta l)_{E F}=+0.15 \mathrm{~mm}
$$ $\delta_{E}=0.15 \mathrm{~mm} \rightarrow$

$$
\begin{aligned}
& \delta_{E}=0.15 \mathrm{~mm} . \\
& 2-\delta_{E}=.15
\end{aligned}
$$

Using similarity of Triangles

A solid block is subjected to a compressive force acting along y-axis, as shown below. The deformations in the x and y-directions were measured as $\delta_{x}=+0.014 \mathrm{~mm}$ and $\delta_{y}=-0.048 \mathrm{~mm}$, respectively.

$$
\sigma_{x=0}=\frac{-14010^{3}}{6005}=-35.89 \mathrm{M} / 2
$$

a) the deformation in the z-direction (δ_{z})
$S_{z}=0$
b) the force to be applied along z-axis to keep the deformation in the z-direction, δ as zero.

$$
\begin{align*}
& \epsilon_{x}=\frac{0.014}{60}=2.33 \times 10^{-6}, \epsilon_{y}=\frac{-0.045}{55}=-8.727 \times 10^{-4} \\
& \epsilon_{x}=\frac{1}{E}\left[\sigma_{x}-\nu\left(\sigma_{y}+\sigma_{z}\right)\right] \\
& \Rightarrow 2.33 \times 10^{-4}=\frac{1}{E}[0-\nu(-35.89+0)] \\
& \Rightarrow \nu=6.501 \times 10^{-6} E \cdots(1) \mathrm{kN} \\
& \epsilon_{y}=\frac{1}{E}\left[\sigma_{y}-\nu\left(\sigma_{x}+\sigma_{z}\right)\right] \\
& \Rightarrow-8.727 \times 10^{-4}=\frac{1}{E}[-35.87-0] \\
& \Rightarrow E=41125 \mathrm{MP} \tag{2}
\end{align*}
$$

(a)

$$
\begin{aligned}
& \epsilon_{z}=\frac{1}{E}\left[\sigma_{z}-\nu\left(\sigma_{x}+\sigma_{y}\right)\right]=\frac{1}{41125}[0-0.267(0-35.89) \\
& \Rightarrow \epsilon_{z}=2.33 \times 10^{-4}=\frac{\delta_{z}}{65}
\end{aligned}
$$

$$
\Rightarrow \delta_{z}=+0.0151 \mathrm{~mm} \text { Ans } 05
$$

(b)

$$
\begin{align*}
\delta_{z} & =0, \therefore \epsilon_{z}=0=\frac{1}{E}\left[\sigma_{z}-\nu\left(\sigma_{x}+\sigma_{y}\right)\right] \\
& \Rightarrow \sigma_{z} \\
& \Rightarrow-0.267(0-35.81)=0 \tag{66}\\
& \therefore \sigma_{z}=-9.582 \mathrm{M} P_{a}=9.582 \mathrm{M}(\mathrm{C}) \\
& =A_{z} \times \sigma_{z}=55 \times 60 \times 9.582 \\
& =31622 \mathrm{~N}=31.622 \mathrm{kN}(C)(04)
\end{align*}
$$

