
DEPARTMENT OF CIVIL \& ENVIRONMENTAL ENGINEERING
Second Semester 2013-14 (132)

CE 203 STRUCTURAL MECHANICS I

FIRST Major Exam
Wednesday 12 March, 2014

Time : 2 hours

Name : \qquad Id \# :

CIRCLE YOUR COURSE--SECTION NO.							
Section \#	$1 \& 5$	2	3	$4 \& 6$	7	8	
Instructor	Shamshad	Ghamdi	Suwaiyan	Khathlan	Sharif	Osta	

Problem	Full Mark	Score
1	25	
2	20	
3	30	
4	25	
Total	100	

Notes:

1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
2. Write clearly and show all necessary calculations, FBDs, and units.

Problem 1 (25 points)

For the frame shown in figure below, the beam $A G$ is supported by a link $B C$ and a pin support at A. Both members (AG and CB) have a square cross-section of 30X30 mm.
a- Determine the average normal stress acting in the section X-X.
b- Determine the required (minimum) diameter of the pin at A .
c- Determine the required (minimum) diameter of the pin at B.

All parts of the structure are made of the same material. The failure bearing stress is $\left(\sigma_{\mathrm{b}}\right)_{\text {fail }}=\mathbf{4 0 0} \mathbf{M P a}$, and the failure shear stress is $(\tau)_{\text {fail }}=200 \mathrm{MPa}$. Use a factor of safety (F.S.) $=\mathbf{1 . 8 0}$.

Problem 2 (20 points)

The rod ABCD is subjected to a temperature increase of $10^{\circ} \mathrm{C}$, in addition to the given loads.
a- Determine the largest normal stress in the whole rod (ABCD).
b- Determine the magnitude and direction of the displacement of point A.
c- Determine the magnitude and direction of the relative displacement of B with respect to C .

\quad Steel	Brass	Copper
$E_{\mathrm{st}}=200 \mathrm{GPa}$	$E_{\mathrm{br}}=100 \mathrm{GPa}$	$E_{\mathrm{cu}}=120 \mathrm{GPa}$
$\alpha_{\mathrm{st}}=12\left(10^{-6}\right) /{ }^{\circ} \mathrm{C}$	$\alpha_{\mathrm{br}}=21\left(10^{-6}\right) /{ }^{\circ} \mathrm{C}$	$\alpha_{\mathrm{cu}}=17\left(10^{-6}\right) /{ }^{\circ} \mathrm{C}$

Problem 3 (30 points)

Before the application of the given force at point E , there was an initial gap between point E and the rigid beam GH.
a- Show (i.e. prove) that the gap will close after the force is applied.
b- Determine the final stress in rod EF.

Cross sectional area for each rod is given below. Use $E=20$ GPa for all rods.

Problem 4 (25 points)

A solid-block is subjected to forces P_{x} and P_{y} as shown below. The deformations in the \boldsymbol{x} and \boldsymbol{y} directions are : $\delta_{x}=+0.25 \mathrm{~mm}$ and $\delta_{y}=-0.15 \mathrm{~mm}$, due to the loads $\boldsymbol{P}_{\boldsymbol{x}}=\mathbf{1 0 0 0} \mathbf{~ k N}$ and $\boldsymbol{P}_{\boldsymbol{y}}=\mathbf{2 8 0 0} \mathbf{~ k N}$.
a. Determine the values of the material constants, $\boldsymbol{E}, \boldsymbol{v}$, and \boldsymbol{G}
b. Determine the deformation in the z-direction $\left(\delta_{z}\right)$
c. Determine the change in the volume $\left(\delta_{V}\right)$

