بسم الله الرحمن الرحيم

King Fahd University of Petroleum & Minerals

DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Second Semester 2013-14 (132)

CE 203 STRUCTURAL MECHANICS I

FIRST Major Exam

Wednesday 12 March, 2014

Time: 2 hours

Name : Id # :.....

CIRCLE YOUR COURSESECTION NO.							
Section #	1&5	2	3	4 & 6	7	8	
Instructor	Shamshad	Ghamdi	Suwaiyan	Khathlan	Sharif	Osta	

Problem	Full Mark	Score	
1	25		
2	20		
3	30		
4	25		
Total	100		

Notes:

- 1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
- 2. Write clearly and show all necessary calculations, FBDs, and units.

Problem 1 (25 points)

For the frame shown in figure below, the beam AG is supported by a link BC and a pin support at A. Both members (AG and CB) have a square cross-section of 30X30 mm.

- a- Determine the average normal stress acting in the section X-X.
- b- Determine the required (minimum) diameter of the pin at A.
- c- Determine the required (minimum) diameter of the pin at B.

All parts of the structure are made of the same material. The failure bearing stress is $(\sigma_b)_{\text{fail}} = 400 \text{ MPa}$, and the failure shear stress is $(\tau)_{\text{fail}} = 200 \text{ MPa}$. Use a factor of safety (F.S.) = 1.80.

Problem 2 (20 points)

The rod ABCD is subjected to a temperature increase of 10° C, in addition to the given loads.

- a- Determine the largest normal stress in the whole rod (ABCD).
- b- Determine the magnitude and direction of the displacement of point A.
- c- Determine the magnitude and direction of the relative displacement of B with respect to C.

Problem 3 (30 points)

Before the application of the given force at point E, there was an initial gap between point E and the <u>rigid beam</u> <u>GH</u>.

- a- Show (i.e. prove) that the gap will close after the force is applied.
- b- Determine the final stress in rod EF.

Cross sectional area for each rod is given below. Use E = 20 GPa for all rods.

Problem 4 (25 points)

A *solid-block* is subjected to forces P_x and P_y as shown below. The deformations in the x and y directions are : $\delta_x = +0.25 \text{ mm}$ and $\delta_y = -0.15 \text{ mm}$, due to the loads $P_x = 1000 \text{ kN}$ and $P_y = 2800 \text{ kN}$.

- a. Determine the values of the material constants, E, v, and G
- b. Determine the deformation in the z-direction (δ_z)
- c. Determine the change in the volume (δv)

