Tuesday, December 4, 2012 7:00-9:30 P.M.

KEY SOLUTION

Problem	Graded by
1	Mohammad Al-Suwaiyan
2	Salah Al-Dulaijan
3	Hamdan AL-Ghamedy
4	Shamshad Ahmad
5	Saeid AL-Ghamdi

Notes:

1. A sheet that includes selected Basic Formulae and definitions is provided with this examination.
2. Write clearly and show all calculations, FBDs, and units.

Note to Students:

Even though the course is not "standard grading", being around the average does not indicate C performance, since there is a minimum amount of course comprehension needed to pass the course satisfactorily, irrespective of the exam average and the performance of other students.
Therefore, students who did poorly in this exam should do double effort in the remaining of the semester to avoid disappointing grade.

After reviewing the key solution and still having a concern about your mark, you may consult with the faculty members who prepared each problem.

The deadline for review is Monday December 17, 2012.

Problem 1: (20 points)
The shown shaft which is made from a circular steel tube $A B$ and a solid circular brass shaft $B C$, is subjected to torques at B and C as shown.
a) Determine the maximum value for T_{0} if the allowable shear stress for both materials is 150 MPa and the allowable angle of twist at B is 4°.
b) Using the results obtained above, determine the rotation of end C.
c) Calculate the maximum shear stress in brass.
d) Calculate $\Phi_{\mathrm{B} / \mathrm{C}}$

For steel (AB)
$d_{\text {out }}=30 \mathrm{~mm}$
$d_{i n}=20 \mathrm{~mm}$
$G_{\text {steel }}=80 \mathrm{GPa}$
For brass (BC)
$d=30 \mathrm{~mm}$

$$
\begin{aligned}
& G_{\text {brass }}=40 \mathrm{GPa} \\
& J_{A B}=\frac{\pi}{2}\left(15^{4}-10^{4}\right)=6.38 \times 10^{4} \mathrm{~mm}^{4} \\
& J_{B C}=\frac{\pi}{2}(15)^{4}=7.95 \times 10^{4} \mathrm{~mm}^{4}
\end{aligned}
$$

* If τ controls

$T_{A B}=T_{0}+500$

$$
\begin{gathered}
\text { (a) } \begin{array}{c}
Z_{\max }=\frac{T_{A B} C}{J_{A B}} \leqslant Z_{\text {allowable }} \\
10^{3} \times \frac{\left(500+T_{0}\right)(15)}{\frac{\pi}{2}\left(15^{4}-10^{4}\right)}=150 \\
T_{C}-138 \mathrm{~N} \cdot \mathrm{~m}
\end{array}, ~
\end{gathered}
$$

(b)

Note that the stress in the brass will not depend on T_{0} and is hess
(c) that τ allowable.

* If φ_{B} carols

$$
\begin{gathered}
\varphi_{B}=\frac{T_{A B} L_{A B}}{J_{A B} G_{A B}} \leqslant \varphi_{a l l, h_{1}} \\
\frac{\left(T_{0}+500\right)(500)}{\frac{\pi}{2}\left(15^{2}-10^{2}\right)(80)}=4 \times \frac{\pi}{18} \\
T_{0}=213 \mathrm{~N} . \mathrm{m}
\end{gathered}
$$

(d)
\because Shearstress controls $\frac{1}{4}$
$\xrightarrow{\text { Ans }}$ max value of $T_{0}=138 \mathrm{NM}$ Ans

Problem 2: (20 points)
The steel shaft is made from two segments: AB is a solid triangular section, and BC is a thin tube.
a) Determine the reactions at A and C .
b) Determine the maximum shear stress in the whole shaft and indicate its location.
c) Determine the angle of twist of B.

$$
\mathrm{G}_{\text {steel }}=75 \mathrm{GPa}
$$

Cross-Section AB

(a) Reactions at $A \underset{\&}{\text { Cross-Section BC }}$

This problem is statically indeterminate,
(I) From equilibrium

$$
T_{A}+T_{C}=700
$$

(2)

$$
\begin{aligned}
& \text { From compatibility } \\
& \sum \phi=0 \quad \phi_{T_{s}}+\phi_{B / C}=0 \\
& \frac{46 T_{A}(1.5)}{(0.03)^{4}\left(75 \times 10^{9}\right)}+\frac{-T_{C}(1)}{4[0.021 \times 0.03]^{2}\left[75 \times 10^{9}\right]}\left[2 \frac{21}{2}+2 \frac{38}{4}\right.
\end{aligned}
$$

(b) max. shear sion

$$
\frac{\text { shaft } A B}{C_{A B}=\frac{20(109)}{(0.03)^{3}}=80.74 \mathrm{MPa}}
$$

is shaft $B C$

$$
T_{B C}=\frac{591}{2[(-021)(-038](0.002)}=185.15 \mathrm{MPa}
$$

location for Coax in $B C$
(C) Angle of twist of B

$$
\begin{gathered}
\frac{46(109)(1.5)}{(0.03)^{4}(75 \times 109)}=0.124 \mathrm{rad} \\
0 \mathrm{~V} \\
\frac{(591)(1)}{4[6.021)(0.038]^{2}(75 \times 10)}\left[2 \frac{21}{2}+2-\frac{38}{4}\right] \\
=0.12 \mathrm{rad}
\end{gathered}
$$

Problem 3 (20 pts.)
Draw the shear force and bending moment diagrams for the beam shown below using the summation (graphical) method. Write the degree (2, 3, etc.) of the curve on each one. Put the values on the diagrams, but you do NOT need to show the calculations. Use appropriate scale. No credit will be given if another method is used.
The reactions are: $\mathrm{A}_{y}=150 \mathrm{kN} \uparrow \quad ; \quad \mathrm{B}_{y}=\mathbf{4 2 0} \mathbf{k N} \uparrow$

Problem 4: (20 points)
A cantilever beam along with its cross-section is shown in the figure below. Determine the following at point A of the beam:
a) Maximum tensile stress and its location
b) Maximum compressive stress and its location
c) Normal stress distribution along the depth of the cross-section
d) Magnitude of the normal force on the lower flange.
M at support \bar{A}^{\prime}.

$$
\begin{aligned}
M_{A} & =5 \times 5 \times 2.5 \\
& =62.5 \mathrm{kN}-\mathrm{m}(\mathrm{~S})
\end{aligned}
$$

The moment will
Cause tensile stress above the
neutral $a x$ is and compressive $\frac{\$}{s t r e s s}$ below the neutral axis

(a)

$$
\left[\sigma_{\text {max }}, t\right]_{A}=\bar{A}
$$

At support A

$$
\begin{aligned}
& I_{N_{A}}=1.661 \times 10^{8} \mathrm{~mm}^{4} \\
& 175
\end{aligned}
$$

$$
\frac{5}{3}=65.85 \mathrm{~N} / \mathrm{mm}^{2}(T)
$$

(Location: top most point of the
(b)

$$
\begin{aligned}
& {\left[\sigma_{\text {max }, C}\right]_{A} }=\frac{M_{A} C_{\text {bottom }}}{I_{N A}} \quad \text { section) Ans } \\
&=\frac{62.5 \times 10^{6} \times 125}{1.661 \times 10^{8}}=\frac{47.03 \mathrm{~N} / \mathrm{mm}^{2}}{(C) \text { Ans }} \text { (Location' } \\
& \text { bottom most } \\
& \text { portion the }
\end{aligned}
$$

(c) Normal Stress distribution diagram shown above.
(d) From $\sigma_{\text {-distribution diagram, the stress over lower flange }}$ can be shown below:

$$
\begin{aligned}
& \left.F_{C} \rightarrow \frac{62.5 \times 10^{6} \times 100}{1.661 \times 10^{8}} \quad F_{C}=\frac{[47.03+37.62}{2}\right] \times 25 \times 200 \\
& =211625 \mathrm{~N} \\
& =211.62 \mathrm{kN} \text { Ans }
\end{aligned}
$$

Problem 5: (20 points)
The beam $A B C$ shown with details of the cross-section given below is made from a material whose ultimate shear strength is 450 MPa .
(59)) Show that the centroidal values for the cross section are:

$$
\bar{y}=0.4233 \mathrm{~m}, \text { and } I_{\mathrm{CA}}=1.2818 \times 10^{-2} \mathrm{~m}^{4}
$$

$(10 \%$) Using a factor of safety (FS) value of 1.5 and the centroidal values given in part a, determine the allowable value for load P.
(5%) c) Sketch (qualitatively) the shear-stress distribution $\tau(y)$ along the beam-depth at the location of maximum shear force. On the diagram clearly indicate the maximum and ininimum values.
From 5 to tics:

$\frac{0.1 \times 0.4 \times 0.05+0.1 \times 0.6 \times 0.4+0.1 \times 0.5 \times 0.75}{0.040+0.060+0.050}$

$$
\therefore \bar{y}=0.4233 \mathrm{~m} \quad(370)
$$

$$
I_{C A}=\sum \bar{I}_{e}+\sum A_{e} t_{e y}^{2}
$$

$$
\begin{align*}
\therefore \quad I_{C A}= & \frac{1}{12}(0.5)(0.1)^{3}+\frac{1}{12}(0.40)(0.1)^{3}+ \\
& +0.05(0.75-0.4233)^{2} \tag{1}\\
& +0.06(0.4-0.4233)^{2} \\
& +0.04(0.4233-0.05)^{2} \\
= & 1.2818 \times 10^{-2} \mathrm{~m}^{4}(2 \% \\
\text { b) } C_{\text {ace }}= & 450 / 1=5=300 . \mathrm{MPa}_{a}
\end{align*}
$$

Cross-section (units: in m)
0.10

$$
\Rightarrow V_{\max }=2 \mathrm{P} / 3
$$

$$
\therefore \tau_{\max }=\frac{V_{\max } Q}{I_{c_{a}} B} \text { witure } Q=Q_{c A} r_{1}
$$

$$
Q_{C A}=0.5 \times 0.1 \times 0.3267+0.2767 \times 0.1 \times \frac{0.2767}{2}=0.02016 \mathrm{~m}^{3}
$$

$$
\text { Getting } T_{\text {max }}=T_{\text {all }} \Rightarrow 2 P / 3=\frac{T_{\text {au }} \times I_{C A} B}{Q_{1 A}}=\left|Q_{p}\right| M N
$$

$$
\therefore P_{\text {ait }}=3 / 2 \times 19.10=28.6 \mathrm{MN} \quad(29)
$$

c) Stress distribution $G(y)$:

