Problem 1:

Problem 1:

- Link AC (shown in the Figure below) has 125 MPa allowable normal stress with square cross section area of 12 X 12 mm . Each of the pins at A, C, and B has a diameter of 8 mm , and the rigid member BCD has a thickness of 12 mm . Determine the following.
a) The largest load P which may be applied at D.
b) The average shear stress in each of the pins at A and B,
c) The bearing stress in the link at C .

Solution:
a) Draw F.B.D.

Using the allowable normal stress of 125 MPa $\Rightarrow F_{A C}=125 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}} \times(0.012 \mathrm{~m})^{2}=18000 \mathrm{~N}=18 \mathrm{KN}$.
$+{ }^{+} \sum M_{\mathrm{e}} \mathrm{B}=0$
$P=(250)-F_{A C} \cdot\left(\frac{200}{250}\right) \cdot 150=0$
$\Rightarrow P=\frac{12}{25} F_{A C}=8640 \mathrm{~N}$.
This is the largest load that may be applied at D b) The reactions at B :
$\rightarrow \Sigma F_{x}=0 ;+B x-18 \times 10^{3} \mathrm{~N} \cdot\left(\frac{150}{250}\right)=0$

$$
\Rightarrow B_{x}=10,800 \mathrm{~N}
$$

$\begin{aligned} &+\uparrow \sum F_{y}=0 ;-B_{y}+18 \times 10 \mathrm{~N} \cdot\left(\frac{200}{250}\right)-8640=0 \\ & \Rightarrow B_{x}=10,800 \mathrm{~N} \\ & \Rightarrow A t B, ~ R e r e l t a n t ~ F i r c e ~\end{aligned}$
$\begin{aligned} \Rightarrow A t B, \text { Resultant Force, } F_{B} & =\sqrt{\theta_{x}^{2}+\theta_{y}^{2}} \\ F_{B} & =12240 \mathrm{~N}\end{aligned}$
$\therefore \frac{\tau_{\text {avg }} \odot A}{1+\text { is }}$:

$$
\begin{aligned}
\Rightarrow\left(\tau_{B}\right)_{\text {avg }}=\frac{6.12 \times 10^{3} \mathrm{~N}}{\frac{\pi}{4}(0.008 \mathrm{~m})^{2}} & =121,757 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2} \\
& =121.76 \mathrm{MPa} .
\end{aligned}
$$

C) The bearing Stress © C :

The bearing area $=0.008 \mathrm{~m} \times 0.012 \mathrm{~m}=96 \times 10^{-6} \mathrm{~m}^{2}$.

$$
\begin{aligned}
\Rightarrow \text { The bearing Stress } \& C=\frac{18 \times 10^{3} \mathrm{~N}}{96 \times 10^{-6} \mathrm{~m}^{2}} & =187.5 \times 18 \mathrm{~Pa} \\
& =187.5 \mathrm{MPa}
\end{aligned}
$$

Problem 2:

A bar with square-cross section is made from a material with Young's modulus $\mathrm{E}=$ 80 GPa , Poisson's ratio $v=0.30$ and has the $\sigma-\varepsilon$ diagram shown in the figure given below. Initial dimensions of the bar are $L=100 \mathrm{~cm}$, and $\boldsymbol{b}=5 \mathrm{~cm}$. If the bar is fixed at the support and is subjected to an axial load $\mathbf{P}=300 \mathrm{kN}$.
a) Compute the value of yield stress σ_{y}.
b) Determine the new dimension \boldsymbol{b} under the given load.
c) If it is known to you that under a larger value of load \mathbf{P} the axial strain $\varepsilon_{a}=$ $5.0^{*} 10^{-3} \mathrm{~mm} / \mathrm{mm}$, and the load is then removed completely, determine the final length L of the bar upon complete removal of load.

a) $\sigma_{y} / \varepsilon_{y}=E / 1 \Rightarrow \sigma_{y}=\varepsilon_{y} E=2 \times 10^{-3} \times 80 \times 10^{3} \mathrm{MPa}=16.0 \mathrm{MPa}$.
b) $\quad \begin{aligned} & \sigma_{a}=N / A_{0}=P / A_{0}=300 \mathrm{kN} /(0.05)^{2}=120 \mathrm{MPa}<\sigma_{y} \\ & \varepsilon_{a}=\sigma_{a} / E=120 \mathrm{MPa} / 80 \times 10^{3} \mathrm{MPa}=1.5 \times 10^{-3} \mathrm{~cm} / \mathrm{cm}\end{aligned}$
$\varepsilon_{l}=-v \varepsilon_{a}=-4.5 \times 10^{-4} \mathrm{~cm} / \mathrm{cm}$
$b_{f}=b_{0}\left(1+\varepsilon_{l}\right)=5\left(1-4,5 \times 10^{-4}\right)=4,9978 \mathrm{~cm}$
c) $\Delta \varepsilon^{*}=\varepsilon_{y} \Rightarrow \varepsilon_{p}=\varepsilon_{\text {tor }}-\Delta \varepsilon^{*}=5 \times 10^{-3}-2 \times 10^{-3} \quad$ ce203_101 $\varepsilon_{p}=3 \times 10^{-3} \mathrm{~cm} / \mathrm{cm} \Rightarrow L_{f}=L_{0}\left(1+\varepsilon_{p}\right)=100.3 \mathrm{~cm}$.

Problem 3:

Rigid member ABD (shown in the figure given below) is supported by steel link BC and pin A. Before application of the load member ABD was vertical. If the steel temperature is raised by $\Delta \mathrm{T}=35^{\circ} \mathrm{C}$ and a force $(\mathrm{F}=2 \mathrm{kN})$ is applied as shown:
a) Calculate the stress in the steel link.
b) Calculate the horizontal displacement of point D .

Given:

$$
E_{\text {steel }}=200 \mathrm{GPa} ; \alpha_{\text {steel }}=12 \times 10^{-6} /^{\circ} \mathrm{C} ; \text { diameter of steel link }(\mathrm{BC})=10 \mathrm{~mm}
$$

Problem 3:
Determine force in link U sing $F B D$ for rigid Member

$$
\begin{gathered}
T \equiv M_{A}=0 \\
2 \times(3+1)-F_{B C}(1)=0 \\
F_{B C}=8^{i<N}(2) \\
\because \sigma_{\text {Steel }}=\frac{F_{B C}}{A}=\frac{8 \times 10^{3}}{\frac{\pi}{4}(10)^{2}} \\
\sigma_{\text {Stead }}=102 \mathrm{MPa}
\end{gathered}
$$

From shape after tad ET application

$$
\frac{\Delta_{D_{x}}}{4}=\frac{\Delta_{B_{C}}}{1} \quad \text { Steel due to }
$$

$$
\begin{aligned}
\because \Delta_{B_{A}} & =4\left|\Delta_{\text {steel }}\right| \\
& =4\left|\left[\frac{F_{B C}(2)}{E A}+\alpha_{S C} L_{B C} \Delta T\right]\right| \\
& =4\left|\left[\frac{-8 \times 900}{\frac{\pi}{4}(10)^{2} \times 200}+12 \times 10^{-6} \times 900 * 35\right]\right| \\
& =4|[-0.458+0.378]|=4(.08)=0.32 \mathrm{~mm}
\end{aligned}
$$

Problem 4: (20 pts.)
Determine the stress in member CD shown.
Detailed
Solution

	$\mathrm{L}(m)$	$\mathrm{A}\left(m^{2}\right)$	$\mathrm{E}(\mathrm{GPa})$
Cable AB	2	$4(10)^{-6}$	250
Post CD	1.5	$6(10)^{-6}$	100
Rod EF	1.8	$9(10)^{-6}$	200

First, check if the gap closes.
If it closes, then the problem is statically indeterminate (SI) and we need to use the geometric compatibility. If not, the problem is statically determinate and there is no need to use geom. comp. as "Statics" is enough to solve the prob.

Assume the gap does not close. Thus, the load is carried by $A B$ and $E F$ only, and $C D$ carries no load ($\sigma=0$).
(1) From the FBD

$$
\begin{aligned}
& 9(4)-F_{A B}(9)=0 \Rightarrow F_{A B}=4 \mathrm{kN} \\
& +\uparrow \Sigma F_{Y}=0 \Rightarrow 4-9+F_{E F}=0 \Rightarrow F_{E F}=5 \mathrm{kN}
\end{aligned}
$$

Now, check the elongations of $A B$ and $E F$

$$
\begin{aligned}
e=\frac{P L}{A E} \Rightarrow e_{A B} & =\frac{4(10)^{3}(2)}{4(10)^{-6} 250(10)^{9}}
\end{aligned}=0.008 \mathrm{~m}, ~\left(8 \times 10^{-3}\right) \mathrm{m} .
$$

Now, we draw the geometry and check the gap.
not
to scale

General method with any value U sing similar triangles, for the gap

$$
\begin{equation*}
\frac{\delta-e_{E F}}{4}=\frac{e_{A B}-e_{E F}}{(4+5)} \Rightarrow \tag{4}
\end{equation*}
$$

(2)

From the FBD

$$
\begin{align*}
& +\uparrow \Sigma F_{y}=0 \Rightarrow \tag{1}\\
& F_{A B}+F_{C D}+F_{E F}-9(10)^{3}=0 \tag{1}
\end{align*}
$$

Note that $F_{C D}$ is assumed "C" since we know it will be so. However, it may be assumed " T " as you will see in the other method.

* Geometric Compatibility:
not to scale

Using similar triangles
(3)

$$
\begin{equation*}
\frac{\left(-e_{C D}+0.002-e_{E F}\right)}{4}=\frac{e_{A B}-e_{E F}}{9} \tag{2}
\end{equation*}
$$

Note that minus (-) sign is used in $e_{C D}$ as $C D \underset{\text { Shrunk }}{\text { (shortened) }}$ (compared with $A B$ and EFI.

* Material Behavior:

$$
\begin{equation*}
\delta=e=\frac{P L}{A E} \tag{3}
\end{equation*}
$$

From eq. (3) into (2)

$$
\begin{aligned}
& \left(-e_{C D}+0.002-e_{E F}\right)=\frac{4}{9}\left(e_{A B}-e_{E F}\right) \\
& -\frac{-F_{C D}(1.5)}{6\left(102^{-6} 100(10)^{9}\right.}+0.002-\frac{F_{E F}(4.8)}{9\left(105^{-6} 200(10)^{9}\right.}=\frac{4}{9}\left[\frac{F_{A B}(2)}{4\left(100^{-6} 250110^{-9}\right.}-\frac{F_{F}(1.8)}{9(10200)^{-2}}\right]
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow 2.5\left(105^{-6} F_{C D}+0.002-8.88889(10)^{-7} F_{A B}-5.55556(10)^{-7} F_{F F}=0\right. \tag{4}
\end{equation*}
$$

(1)

$$
\begin{equation*}
\text { or } 25 F_{C D}-8.88889 F_{A B}-5.55556 F_{E F}+20,000=0 \tag{2}
\end{equation*}
$$

Now we have two eqs. (\#(1) and (4)) and three untchowns $\left(F_{A B}, F_{C D}\right.$, and $\left.F_{E F}\right)$. The moment equation will be utilized. \Rightarrow

$$
t \Sigma M_{c}=0 \Rightarrow
$$

$$
\begin{equation*}
4 F_{E F}-5 F_{A B}=0 \Rightarrow F_{E F}=1.25 F_{A B} \tag{5}
\end{equation*}
$$

From eq. (5) into (1), $F_{A B}+F_{C D}+1.25 F_{A B}-q(10)^{3}=0$

$$
\begin{equation*}
\Rightarrow \quad F_{A B}=4000-0.44444 F_{C D} \tag{6}
\end{equation*}
$$

From (6) into (5),

$$
\begin{equation*}
F_{E F}=5000-0.55556 F_{C D} \tag{7}
\end{equation*}
$$

From es. (6) \&(7) into (4),

$$
25 F_{C D}-35,556+3.9506 F_{C D}-27,778+3.0864 F_{C D}+20,000=c
$$

$$
\begin{aligned}
\Rightarrow F_{C D}=\frac{43,334}{32.037} \Rightarrow F_{C D} & =1,353 \mathrm{~N} \text { as shown } \\
& =1.353 \mathrm{kN} C C D
\end{aligned}
$$

$$
\checkmark F_{A B} \approx 3.4 \mathrm{rN} ; \quad F_{E F}=4.25 \mathrm{D} \approx \text { not required }
$$

$$
\sigma_{C D}=\frac{F_{C D}}{A}=\frac{-1,353}{6(10)^{-6}} \Rightarrow \sigma_{C D}=225.4 \mathrm{MPa}{ }^{\prime \prime} C^{\prime \prime}
$$

Are the values of the forces reasonable?!
If there is no gap, how will this affect F_{c} aw other forces?!

Another Method: Assume FCD is " T "
Equilibrium:
From the FBD

$$
\begin{align*}
& +\uparrow \sum F_{y}=0 \Rightarrow \\
& F_{A B}-F_{C D}+F_{E F}-9(10)^{3}=0 \tag{1}
\end{align*}
$$

* Geom. Compar:
drawing not to scale

Using similar triangles

$$
\begin{equation*}
\frac{\left(-e_{C D}+0.002-\varphi_{E F}\right)}{4}=\frac{e_{A B}-e_{E F}}{9} \tag{2}
\end{equation*}
$$

Note that minus (-) sign is used in $e_{C D}$ as $C D \underset{\text { (got shorter }}{\text { shrunk }}$ (compared with $A B$ and $E F$).

* Material Behavior:

$$
\begin{equation*}
\delta \div e=\frac{P L}{A E} \tag{3}
\end{equation*}
$$

From eq. (3) into (2)

$$
\begin{aligned}
& \left(-e_{C D}+0.002-e_{E F}\right)=\frac{4}{9}\left(e_{A S}-e_{E F}\right) \\
& -\frac{F_{C D}(1.5)}{6(10)^{-6} 100(10)^{9}}+0.002-\frac{F_{E F}(1.8)}{9\left(105^{-6} 200019\right)^{9}}=\frac{4}{9}\left[\frac{F_{A B}(2)}{4\left(100^{-5} 250(11)^{9}-F_{F}(11.8)\right.}\right]
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow-25\left(100^{-6} F_{C D}+0.002-8.88889(10)^{-7} F_{A B}-5.55556(10)^{-7} F_{E F}=0\right. \\
& \stackrel{\text { or }}{=}-25 F_{C D}-8.88889 F_{A B}-5.55556 F_{E F}+20,0.00=0 \tag{4}
\end{align*}
$$

Now we have two eqs. (\# (1) and (4)) and three untcoows $\left(F_{A B}, F_{C D}\right.$, and $\left.F_{E F}\right)$. The moment equation will be utlized. \Rightarrow

$$
\begin{align*}
& +\Sigma M_{c}=0 \Rightarrow \\
& 4 F_{E F}-5 F_{A B}=0 \Rightarrow F_{E F}=1.25 F_{A B} \tag{5}
\end{align*}
$$

From eq. (5) into (1), $F_{A B}-F_{C D}+1.25 F_{A B}-9(10)^{3}=0$

$$
\begin{equation*}
\Rightarrow \quad F_{A B}=4000+0.44444 F_{C D} \tag{6}
\end{equation*}
$$

From (6) into (5),

$$
\begin{equation*}
F_{E F}=50000+0.55556 F_{C D} \tag{7}
\end{equation*}
$$

From eqs.(6) (7) into (4),

$$
\begin{aligned}
& -25 F_{C D}-35,556+3.9506 F_{C D}-27,778-3.0864 F_{C D}+20,000=0 \\
& \Rightarrow F_{C D}=\frac{-43,334}{32.037} \Rightarrow F_{C D}=-1,353 \mathrm{~N} \text { "opp.din." } \\
& =1.353 \mathrm{kN} \text { " } \mathrm{C}^{\prime} \\
& \varangle F_{A B} \approx 3.4 \mathrm{kN} ; F_{E C}=4.25 \mathrm{D} \text { not required } \\
& \sigma_{C D}=\frac{F_{C D}}{A}=\frac{-1,353}{6(10)^{-6}} \Rightarrow \sigma_{C D}=225.4 \mathrm{MPa} C^{\prime \prime}
\end{aligned}
$$

Common Mistake: $巳_{C D}$ taken as $\underset{\sim}{\oplus}$: extension
Equil: $\Sigma F_{y}=0$ CD

$$
\begin{equation*}
F_{A B}+F_{C D}+F_{E F}-9,000=0 \text { (1) } \tag{T}
\end{equation*}
$$

$$
F_{C D}{ }^{\prime C^{\prime \prime}}
$$

Geom. Comp.:

$$
\begin{align*}
& -25 F_{C D}-8.8889 F_{A B}-5.5556 F_{E F}+20,000=0 \tag{2}\\
& \text { Equil: } \sum M_{C}=0 \\
& F_{E F}=1.25 F_{A B} \tag{3}
\end{align*}
$$

From (3) into (1),

$$
\begin{equation*}
F_{A B}=4000-0.44444 F_{C D} \tag{4}
\end{equation*}
$$

From (4) into (3)

$$
\begin{equation*}
F_{E F}=5000-0.55556 F_{C D} \tag{5}
\end{equation*}
$$

From (4) and (5) into (2),

$$
\begin{aligned}
& -25 F_{C D}-35,556+3.9506 F_{C D}-27,778+3.0864 F_{C D}+24,000=0 \\
& \Rightarrow \quad F_{C D}=-\frac{43334}{17.963}=-2.412 \mathrm{kN}
\end{aligned}
$$

It means in the opposite direction $\Rightarrow X$

$$
\Rightarrow \sigma=-(-402)=402 \mathrm{MPa} \text { " } T \text { " } X
$$

Common Mistake: $e_{C D}$ taken as $\underset{\sim}{\oplus}$: extension Equil: $\Sigma F_{y}=0$ $\underset{\sim}{C D}$

$$
F_{A B}-F_{C D}+F_{E F}-9,000=0
$$

Geam. Comp:

$$
\begin{align*}
& 25 F_{C D}-8.8889 F_{A B}-5.5556 F_{E F}+20,000=0 \tag{2}\\
& \text { Equil: } \Sigma M_{c}=0 \\
& F_{E F}=1.25 F_{A B}
\end{align*}
$$

From. (3) into (1),

$$
\begin{equation*}
F_{A B}=4000+0.44444 F_{C D} \tag{4}
\end{equation*}
$$

Frow. (4) into (3)

$$
\begin{equation*}
F_{E F}=5000+0.55556 F_{C D} \tag{5}
\end{equation*}
$$

From (4) and (5) into (2),

$$
\begin{aligned}
& 25 F_{C D}-35,556-3.9506 F_{C D}-27,778-3.0864 F_{C D}+20,000=0 \\
& \Rightarrow \quad F_{C D}=\frac{43334}{17.963}=2.412 \mathrm{kN}
\end{aligned}
$$

It means it is as shown $(T) \Rightarrow X$

$$
\Rightarrow \sigma=402 \mathrm{MPa}((T))
$$

Problem 5:
A solid block has the initial dimensions shown in the figure (given below). If the block is subjected to tensile stresses in the x and y directions equal to 40 MPa , and to compressive stress in the z direction equal to 20 MPa :
a) determine the final length of the block in the z direction;
b) calculate the change in volume due to the applied stresses (use either the exact or approximate method).

Given: $E=10 G P a$, and $v=0.2$.

$$
\begin{aligned}
& \sigma_{x}=+40 \mathrm{MPa} \\
& \sigma_{y}=+40 \mathrm{MPa} \\
& \sigma_{z}=-20 \mathrm{MPa}
\end{aligned}
$$

a)

$$
\begin{aligned}
& \epsilon_{z}=\frac{1}{E}\left[\sigma_{z}-v\left(\sigma_{x}+\sigma_{y}\right)\right]=\frac{1}{10 \times 10^{3}}[-20-(-2)(40+40)] \\
& \epsilon_{z}=-3.6 \times 10^{-3} \\
& E_{z}=\frac{(B l)_{z}}{l_{z}},(\Delta l)_{z}=\left(-3.6 \times 10^{-3}\right)(250)=-0.9 \mathrm{~mm} \\
& \therefore \text { final length in } z-\text { dir }=250-.9=249.1 \mathrm{~mm}
\end{aligned}
$$

b)

$$
\begin{aligned}
& \epsilon_{x}=\frac{1}{10 \times 10^{3}}[40-(.2)(40-20)]=+3.6 \times 10^{-3} \\
& \epsilon_{y}=\frac{1}{10 \times 10^{3}}[40-(.2)(40-20)]=+3.6 \times 10^{-3} \\
& e \approx \epsilon_{x}+\epsilon_{y}+\epsilon_{z}=+3.6 \times 10^{-3}=\frac{\Delta V}{V} \\
& \therefore \Delta V=(e)(V, \operatorname{lume}) \\
& \\
& \therefore=\left(3.6 \times 10^{-3}\right)[400 \times 300 \times 250]=+108000 \mathrm{~mm}^{3}
\end{aligned}
$$

OR: you can calculate final volume and subtract from it the initial volume. (more accurate but longer)

