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Deflection of Beams 
 

Theory  &  Examples 
 
 
*  Moment-Curvature Relation (developed earlier): 
 

 
EI
M1

=
ρ

 

 
From calculus, the curvature of the plane curve shown is given by 
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For “very small” deformation (as it is the case in most engineering problems), 
(dy/dx)2 << 1 
Thus, 

 2

2

dx
yd1

≈
ρ

 

 

⇒ 2

2

dx
yd

EI
M

=   ⇐ y is the deflection 

 

⇒ 2

2

dx
ydEIM =  

 

Recall that    
dx
dM)x(V =      &     

dx
dV)x(w =  

 
Thus, the summary is 
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2
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ydEI
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Elastic curve   or 
Deformed shape 
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Moment
dx

ydEI)x(M 2

2

==    (3) 

 

slope
dx
dy)x( ==θ     (4) 

 
⇒ 
 

dxwV ∫=  
 
 

dxdxwdxVM ∫∫=∫=   
 
 

dxdxdx
EI
wdx

EI
M

∫∫∫=∫=θ  

 
 

dxdxdxdx
EI
wdxy ∫∫∫∫=∫= θ

 

 
 
 
The deflection of the beam is needed for two main reasons: 
 

1) To limit the maximum deflection (i.e. ymax  ≤  yallowable) 
2) To determine the reactions in statically indeterminate (SI) problems 

 
 

If the beam is designed based on the maximum allowable deflection, this is called 

“design for stiffness”.  If the design is based on limiting the maximum (allowable) 

stress, it is called “design for strength”.  In most applications, the stress controls 

(i.e. limiting the stress is more important than limiting the deflection because 

deflections are usually “very small” in “typical” structures).  Thus, the second 

reason above (SI problems) is more important than the first one (to limit the 

maximum deflection).  
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There are many methods for calculating slopes and deflections of beams. In this 

course, only three methods are covered. In CE 305 (Structural Analysis I), several 

methods, including energy and computer procedures, are discussed in details. 

 

The three methods are 

 1) Double Integration 
 

 2) Successive Integration 
 

 3) Singularity function 
 
In fact, these three methods have the same theoretical basis; thus, they could be 

considered as one way, with different branches, for determining deflections. It is the 

elementary, fundamental, or basic method of integration. 

 
The deflection due to the moment

 

 only will be discussed here. The deflection due to 

the shear is discussed in CE 305 and other courses. However, yV is usually much less 

than yM . Therefore, yV is negligible in most cases. 

 
1) Double integration method: 
 
If the moment equation is known or it can be obtained easily, then by integrating 

twice (double), the deflection equation can be determined. In this case, two 

integration constants for each

 

 moment equation appear; therefore, two boundary 

conditions (B.C’s.) for each equation are needed.  Note that there could be more than 

one moment equation in a beam, depending on the loading conditions.  

In statically indeterminate beams, the moment equation can not be written 

explicitly, but it must be written in terms of some of the unknown reactions. Thus, 

more than two boundary conditions are needed in order to solve for the two constants 

and the unknown reactions, as will be seen in the examples. [These “extra” reactions 



 4 

are usually called redundants.] In general, the number of B. C.’s has to equal to 2 

plus the degree of statically indeterminacy of the beam (n), or 

  B.C.’s  = 2 + n  
 

__________________________________ 
 

 
Example 1: 

 Write the  B.C.’s for each of the beams shown below [1(a) to 1 (f)]. 
 
 
 
 

 
 

y(0) = 0   y() = 0
    

 
1(a) 

 

 
  y(0) = 0 
 θ(0) = 0    

1(b) 
 
 

 

 
        y() = 0 
       θ() = 0 

1(c) 
 

 

 
y(0) = 0    y() = 0 
θ(0) = 0 

1(d) 

 

 
y(0) = 0   y() = 0 
θ(0) = 0   θ() = 0 

1(e) 
 

 

y(0) = 0  y() = 0  y(2) = 0 
θ(0) = 0 

1(f) 
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The discussion above about B.C.’s is true for beams with a single moment equation. If 

the beam has more than one moment equation, then the total number of constants is 

equal to 2 times the number of equations. Thus, two B.C.’s are not enough to solve for 

all the constants. Therefore, the concept of continuity conditions (C.C.’s) is 

introduced. That is, the slope and deflection must be continuous between adjacent 

intervals. These continuity conditions give additional or supplementary equations 

which make it possible to solve for all the constants, as illustrated below. However, as 

the number of moment equations increases the number of unknown constants 

increases as well, giving a large number of equations which have to be solved 

simultaneously. This could be very tedious and time-consuming; thus, this method 

becomes impractical, and a better one, called singularity function

 

 method, is 

introduced, as will be discussed later. Because of that, beams with one moment 

equation only are covered by this method as well as by the method of successive 

integration. 

 
Example 2: 
Write the  B.C.’s and the C.C.’s for each of the beams shown below [2(a) & 2(b)]. 
 

 
 

             y(a-) = y(a+)         y() = 0 
 

             θ(a-) = θ(a+)         θ() = 0 
 

⇑ ⇑ 
 

      C.C.’s            B.C.’s 
 

2(a) 
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      y(a) = 0          y(b-) = y(b+)        y() = 0 
     θ(a-) = θ(a+)          θ(b-) = θ(b+)        θ() = 0 
 

              ⇑       ⇑     ⇑ 
 

   B.C.’s & C.C.’s     C.C.’s          B.C.’s 
 

2(b) 
 

 
 

 
Example 3: 
Derive an expression for the elastic curve (deflection) and find the maximum y & 
θ in the beam shown. 
 
 
 
 
 
 
 
 
Solution
 

: 

From the FBD shown, the moment equation can be written: 
 
 M(x) = Mo  
 
 1oo CxMdxMdx)x(M)x(EI +=∫=∫=θ  
 

 21
2

o1o CxCxM
2
1dx)CxM(dx)x(EI)x(yEI ++=+∫=∫= θ  

 
 B.C.’s :  y() = 0  ;  θ() = 0 [two B.C.’s and two constants   ⇒  OK] 
 
 θ() = 0    ⇒     Mo  + C1 = 0    ⇒    C1 = - Mo  
 
 y() = 0   ⇒   ½ Mo 2 + (-Mo) + C2 = 0     ⇒   C2 = ½ Mo 

2 
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EI θ(x) = Mo (x - ) ⇒ 
 
 
 
 
 
 
 

θmax & ymax are at the free end. In general,  ymax is always
 

 at the free end or at the  

point Where    0
dx
dy

==θ . 
 

 θmax = θ(0)    ⇒      θmax = -Mo = Mo (cw)  @  
 ymax = y(0)    ⇒      ymax = Mo

2/2 ( ↑ )  @  
x = 0 

 
x = 0 

 
 
Example 4
 

:  

Derive equations for θ and y for the beam shown. 
 
 
Solution
 

: 

M(x) = wo x – ½ wo
2 – wo x2/2 

 
 
            
 
 
 
            

 
dx)

2
xww

2
1xw(dxMEI

2

o
2

oo −−∫=∫= θ  

 

1
2

o
2

o
3

o1
3

o
2

o
2

o Cxw
2
1xw

2
1xw

6
1Cxw

6
1xw

2
1xw

2
1

+−+=+−−= 

 

21
22

o
3

o
4

o

1
2

o
2

o
3

o

CxCxw
4
1xw

6
1xw

24
1

Cxw
2
1xw

2
1xw

6
1dxEIEIy

++−+−=







 +−+−∫=∫=



θ
 

 
B.C.’s:  θ(0) = 0    ⇒   C1 = 0 
   y(0) = 0    ⇒    C2 = 0   ⇒ 
 









++=

2
x

2
xM)x(yEI

22

o


  

FBD’s 
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Solve this example with x from right to left. 
 
Which one is easier ?!  Why? 
 
 
 
Example 5
 

:  

For the beam shown, determine the reactions. 
 
 
 
 
 
 
 
Solution
 

: 

Since the beam is statically indeterminate, the reactions are not known and, thus, 
the moment equation can not

 

 be written explicitly; therefore, it has to be written in 
terms of some of the unknown reactions.  ⇒ 

+   ∑Mo = 0  ⇒  M(x) – RAx 0
3
x

2
xw 2

o =













−


 ⇒ 

3o
A x

6
wxR)x(M


+=  

  
 

1
4

o
2

A
3o

A Cxw
24
1xR

2
1dx)x

6
wxR(dx)x(M)x(EI ++=+∫=∫=


θ  

21
5

o
3

A

1
4

o
2

A

CxCxw
120

1xR
6
1

dxCxw
24
1xR

2
1dx)x(EI)x(EIy

+++=







 ++∫=∫=




θ

 

 
 

B.C.’s:   y(0) = 0 ; θ( ) = 0  ; y( ) = 0   ⇒ 
    3  B.C.’s  &  3 unknowns (C1, C2, RA )  ⇒     
 

ok 

)x3x3x(
EI6

w)x( 223o  −+−=θ  

)x6x4x(
EI24

w)x(y 2234o  −+−=  

x 

FBD 

EI = Constant 

Note that forces/reactions 
in the x-direction are 
usually ignored in beams. 
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y(0) = 0  ⇒  C2 = 0 
 

0)( =θ    ⇒  0C
24
w

R
2
1

1
4o2

A =++ 


    ⇒ 
 

0
24
w

CR
2
1 3o

1A
2 =++          (1) 

 

0)(y =   ⇒  0C
120
w

R
6
1

1
5o3

A =++ 


    ⇒ 
 

0
120
w

CR
6
1 3o

1A
2 =++          (2) 

 
By solving Equations (1) & (2), 
 

10
w

R o
A


−=   ⇒     (↓) 

 

and   
120
wC

3
o

1


=  

 

⇒   )x6x5(
EI120

w)x( 4224o 


+−=θ  

 

)xx2x(
EI120

w)x(y 4325o 


+−=  

 
At this stage, static can be used to find the remaining reactions. In the FBD, 
 
 
+↑  ∑ Fy = 0 ⇒ 
 
 

  0R
10
w

2
w

B
oo =+−


 

 
 

⇒ oB w
5
2R −=  ⇒         (↓) 

 
 

+ ∑ MB = 0    ⇒   0M
6

w
10

w
B

2
o

2
o =+−


  ⇒     (   ) 

 

[We can also use the relation  MB = - M().]      (Why?!) 

10
wR o

A


=  

5
w2R o

B


=  

FBD 

15
wM

2
o

B


=  
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2) Successive integration method: 
 
This method is similar to the double integration procedure except that it starts with 
the load equation instead of the moment equation. This method is utilized when the 
loading on the beam is so complicated that it is not easy to obtain the moment 
equation. Otherwise, double integration method is better. Note that 4 constants

 

, not 
2, appear after integrating the load function four times. Thus, 4 B.C.’s are needed; 
they include shear & moment B.C.’s 

 
 
 
 
Example 6
 

: 

Rework Example 5 utilizing the successive integration method. 
 
Solution
 

: 

xw)x(w o


=   

1
2o Cx

2
wdxw)x(V +=∫=


 

21
3o CxCx

6
wdxV)x(M ++=∫=


 

 
[ Note that no need for FBD to obtain M(x) ] 
 

32
214o CxCx

2
Cx

24
wdxM)x(EI +++=∫=


θ  

 

43
21315o CxCx

2
Cx

6
Cx

120
wdxEI)x(yEI ++++=∫=


θ  

 
B.C.’s: 
 
M(0) = 0   ;   y(0) = 0   ;   θ() = 0   ;   y() = 0    (4 equations & 4 unknowns  ⇒ ok) 
 
M(0) = 0    ⇒    C2 = 0 
 
y(0) = 0    ⇒   C4 = 0 
 

θ() = 0   ⇒   0C
2

C
24
w

3
213o =++     

 

y() = 0  ⇒   0C
6
C

120
w

3
314o =++    

EI = Constant 

Note that forces/reactions 
in the x-direction are 
usually ignored in beams. 



 11 

two equations & 2 unknowns (C1 and C3)  ⇒ 
 

10
wC o

1


−=      and 

 

120
wC

3
o

3


=  ⇒ 

 
 

)x6x5(
EI120

w)x( 4224o 


+−=θ  

 

)xx2x(
EI120

w)x(y 4325o 


+−=  

 
RA = V(0)    ⇒ 

 
   
    ⇒ 
 
 

 
From equilibrium (as in Example 5), 
 
+↑  ∑ Fy = 0  &  +    ∑ MB = 0  ⇒ 

 
   
(↓)     and 
 

 
   

(   ) 
 

 
[You can also use   RB = - V()  &    MB = - M().] 
 
(Why?!)

10
w

10
wR oo

A


=−=  (↓) 

5
w2R o

B


=  

15
wM o

B


=  
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Example 7: 

Obtain formulas for the slope and deflection, and determine the reactions at A 
and B for the beam shown. 
 
Solution
 

: 

It is SI
 

.   (Why?!   Show!) 

x
2

cosw)x(w o


π
−=  

 

1o Cx
2

sin2wdxw)x(V +





−=∫=



 π
π

 

 

21

2

o CxCx
2

cos2wdxV)x(M ++





=∫=



 π
π

 

 

32
21

3

o CxCx
2

Cx
2

sin2wdxM)x(EI +++





+∫=



 π
π

θ  

 

43
2231

4

o CxCx
2

Cx
6

Cx
2

cos2wdxEI)x(yEI ++++





−=∫=



 π
π

θ  

 
B.C.’s 
 

0)0( =θ    ⇒   C3 = 0 
 

0)0(y =    ⇒  0C2w 4

4

o =+





−
π


   ⇒   
4

o4

2wC 





=
π


 

 
M() = 0    ⇒  C1 + C2 = 0      (1) 
 

0)(y =     ⇒   02w
2

C
6

C
4

o

2

2

3

1 =





++
π


   (2) 

 
 
Two equations and two unknowns    ⇒ 
 

o41 w48C
π


=   ; 04

2

2 w48C
π


−=     ⇒ 

 
 

o4o w48x
2

sinw2)x(V
π

π
π






+






−=  

Deformed shape 

EI= Constant 
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 (↑) )0(VRA =  ⇒ 
 
 
 

)0(MM A =  ⇒ 
 
 
 
 
 

 
[Note direction of MA !    Why??!!] 
 
 

)(VRB −=  ⇒ 
 
 (↑) 
 
 

 
Can you use double integration method to solve this example?! 
Explain! 

o4

2

o4o

2

w48xw48x
2

cosw2)x(M
ππ

π
π






−+






=  

xw48xw24x
2

sinw2)x(EI o4

2
2

o4o

3

ππ
π

π
θ 




−+






=  

o

4
2

o4

2
3

o4o

4

w2xw24xw8x
2

cosw2)x(yEI 





+−+






−=

πππ
π

π





 

o4A w48R
π


=  

o
2

o
2

o
2

4

2

A w0875.0w0875.0w484M  =−=






 −
=

π
π

    (  ) 
 

oo4B w144.0w482R  =





 −=

ππ
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3) Singularity function method: 
 
The singularity functions permit the expression of ANY system of loads as an 
equivalent distributed load. Thus, one equation

 

 for each of  w,  V , M, θ,  and  y  
can be written. 

Macaulay functions: 
 





≥−
<

=−
ax)ax(
ax0

ax n

n
  n = 0,1,2,3 … 

 
 

∫ +
−

=−
+x

o

1n
n

1n
ax

da ξξ  

 
Note that 〈 〉 are called pointed
 

 (or angle) brackets. 

Also note that the quantity inside the brackets 〈…〉 can never be 
negative. If you “tried it” and it came out to be negative, then it 
means it is ZERO
 

. 

 
 

 
Example 8: 

Using the singularity function, write the equivalent load equation for 
each of the beams shown below. 
 
(a) 
 

 
 

we = - wo 〈x-a〉 
0 
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(b) 

 
we = - wo 〈x-0〉 

0 + wo 〈x-a〉 
0 

 
 
 
(c) 

 
 

 
we = wo 〈x-a〉 

0 – wo 〈x-b〉 
0 

 
 
 
 
Singularity functions for 
 

concentrated force 
 





=∞
≠

=−
−

ax
ax0

ax 1
 

 

∫ −=−
−

x

o

01 axda ξξ  

 
(Dirac Delta or unit impulse function) 
 
 
we = P  〈x-a〉-1 

 

∫ ∫
−

−=
x

o

x

o

1

e daPdw ξξξ  

 

      PaxP 0
≡−=  
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Singularity functions for 
 

concentrated couple 





=∞
≠

=−
−

ax
ax0

ax 2
 

 

∫
−−

−=−
x

o

12 axda ξξ  

 
 
we = C 〈x-a〉−2 
 
 
 
 
 
 
 
 
 

 
Example 9: 

Write a single
 

 equation for M using the singularity function. 
 
 
 
 
 
 
 
 
 

 
 
 
Solution: 
 
RA = 2 kN  ↑    ;    RB = 8 kN  ↓ 
 
Draw FBD of the last
 

 segment   ⇒ 

 
 
 
 
 
 
 
 

22101 8x46x44x102x500x2)x(M −−−+−−−+−=  
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Example 10: 

Determine the equivalent distributed load associated with the beam 
shown in the figure below. Determine the shear, moment, slope, and 
deflection equations, using the Macaulay functions and the 
singularity functions. 
 
 

 
 
 
 
 

 
Solution: 

The equivalent distributed load corresponding to all applied forces and reactions is 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
+ 

 
 

 
 
 
 
 
 
 
 
 
 

║ 
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[ ] 12001

e 20x215x2010x4.00x4.00x2w −−−
−+−+−−−−−=

              (a) 
 
The shear force equation is obtained by integrating Eq. (a); consequently, 
 

[ ] 01110 20x215x2010x4.00x4.00x2)x(V −+−+−−−−−=
−

             (b) 
 
The moment equation is obtained by integrating Eq. (b); thus 
 

[ ] 10221 20x215x2010x2.00x2.00x2)x(M −+−+−−−−−=
              (c) 
 
Notice that neither equation requires a constant of integration because we included 
the reactions in the expression for the equivalent distributed load. If the reactions 
had not been included in we , a constant of integration would be required for each 
integration. 
 
The equations for slope and deflection follow from Eq. (c): 
 

1

2

1332

C20x

15x2010x
3
2.00x

3
2.00x)x(EI

+−+

−+



 −−−−−=θ

  (d) 

and 
 

21

3
3
1

2443
3
1

CxC20x

15x1010x
12

2.00x
12

2.00x)x(yEI

++−+

−+



 −−−−−=

     (e) 

 
A constant of integration has been included for each integration that leads to the 
last two equations. These constants are required so that boundary conditions 
appropriate to the problem can be satisfied. In the present case, the boundary 
conditions yield 
 
 y(0) = 0 ⇒ C2 = 0          (f) 
 
 0)20(y =   ⇒ 
 

 0C20)5(10)10(
12

2.0)20(
12

2.0
3

20
1

244
3

=++



 −−    (g) 

 
 
Accordingly, 
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24

500C1 −=          (h) 

 
Let us write the shear and moment equations for the intervals  0  ≤  x  ≤  10 and 
10  ≤  x  ≤  15. From Eqs. (b) and (c), we determine that 
 
 









−+−=
−+−=

≤≤

−=
−=
≤≤

222 )10x(2.0x2.0x2)x(M
)10x(4.0x4.02)x(V

15x10
and

x2.0x2)x(M
x4.02)x(V

10x0
  (i) 

 
 
Verify that these equations are correct by drawing appropriate free-body diagrams 
and invoking force and moment equilibrium. 
 
 
 
 
 

 
Example 11: 

Rework Example 10 above by starting with the moment equation. 
 

 
Solution: 

Note that once the distributed load starts, it has to continue up to the 
end of the beam. Thus, the load is redrawn as shown. 
 
 
 
 
 
 
 
        Note the directions of forces 
 
 
Next, make a section (cut) through the last

 

 segment of the beam (“near” the right 
support) after calculating the reactions. Then, draw the FBD of the left portion 
as shown. 
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Now, the moment equation can be written. 
 

0M p =∑     ⇒ 

0221 15x2010x
2
4.00x

2
4.00x2)x(M −+−+−−−=  

 
(Note that the right reaction is not
 

 involved in the equation. Why?!) 

1

1332 C15x2010x
)3(2

4.00x
)3(2

4.00x)x(EI +−+−+−−−=θ

 

21

2443 CXC15x
2

2010x
24

4.00x
24

4.00x
3
1)x(yEI ++−+−+−−−=

 
 
B.C.’s:    y(0) = 0 ⇒ C2 = 0 
 

   y(20) = 0 ⇒ C1 = -125/6 
 
Singularity Function: 
 

0x
6

12515x1010x
60
10x

60
10x

3
1)x(yEI 2443

−−−+−+−−−=
 
                   [for any value of x] 
 
Normal Functions: 
 

x
6

125x
60
1x

3
1)x(yEI 43 −−=     ⇐   for 0 ≤ x ≤ 10′ 

 

x
6

125)10x(
60
1x

60
1x

3
1)x(EIy 443 −−+−=           ⇐   for 10′ ≤ x ≤ 15′ 

 

x
6

125)15x(10)10x(
60
1x

60
1x

3
1)x(yEI 2443 −−+−+−=  

              for 15′ ≤ x ≤ 20′ 
 
Some of the equations above can be simplified. 
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Example 12 

Given: 
 
 The beam shown 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Required.: 
 
 The reaction at A 
 
Solution: 
 
Since the beam is statically indeterminate

 

, the moment equation must be 
expressed in terms of some of the unknown reactions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
From the FBD 
 

0M p =∑  ⇒   








 −









 −
−−−=

3
x

2
x

xw0xR)x(M
11

1o1

A





 

 

            
3o1

A x
6
w0xR 


−−−=  

Deformed shape 

EI = Constant 
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1

4o2

A Cx
24
w0xR

2
1dx)x(M)x(EI +−−−=∫= 


θ  
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5o3

A CxCx
120
w

0xR
6
1dx)x(EI)x(yEI ++−−−=∫= 


θ  

 
B.C’s.: 
 
 y(0) = 0 
 
 θ(2) = 0 
 
 y(2) = 0 

 
⇒ 3 equations & 3 unknowns (C1 ,  C2 ,  and RA) 
 
 

  y(0) = 0    ⇒    C2 = 0 
 

  0)2( =θ   ⇒  0C)2(
24
w

)2(R
2
1

1
4o2

A =+−− 


   ⇒ 

 

   2
A

3o
1 R2

24
w

C  −=  
 

  0)2(y =   ⇒  0)2(C)2(
120
w

)2(R
6
1

1
5o3

A =+−− 


  
 

⇒ 0R4
12
w

120
w

R
3
4 3

A
4o4o3

A =−+−   ⇒ 

 
 
 
 
 
 

 
Note that once RA is found, the remaining reactions at B can be 
determined by the Statics equilibrium equations.   (Try it yourself !) 

oA w
320
9R =  


