How Asphalt Behaves

Behavior Depends on

• Temperature
• Time of Loading
• Age of asphalt
High Temperature Behavior

- High Temperature
 -- desert climate
 -- summer

- Sustained Loads
 -- slow moving trucks
 -- intersection

Viscous liquid
Shear or Resisting Stress, τ between Layers

Layer 1

Layer 2

Direction of flow Of both layers

Velocity Layer 1

Velocity Layer 2

Shear stress = $\mu \times$ rate of shear strain

viscosity
Viscosity Characteristics

- **Newtonian Fluid**
 -- viscosity does not depend on shear strain rate
 -- *for example*... *hot asphalt*

- **Shear Thinning Fluid**
 -- viscosity decreases as shear strain rate increases
 -- *for example*... *warm asphalt*

- **Shear Thickening Fluid**
 -- viscosity increases as shear strain rate increases
 -- *for example*... *some polymers*
Pavement Behavior-High Temperature

- Permanent Deformation
- Mixture is Plastic
 - wheel path rutting
 - shoving at intersections
- Shear Thickening Fluid
 - asphalt cement (some)
 - mineral aggregate (lots)

Low Temperature Behavior

- Low Temperature
 - cold climate
 - winter
- Rapid Loads
 - fast moving trucks
Pavement Behavior-Low Temperature

- **Thermal Cracks**
 - internal stresses included by temperature change
 - stress exceed strength
- **Mixture is Brittle**
 - transverse cracks
- **Depend on**
 - asphalt cement (lots) \(\simeq 90\% \)
 - mineral aggregate (little) \(\simeq 10\% \)
Aging Behavior

- **Asphalt Reacts with Oxygen**
 - “oxidative” or “age” hardening
- **During Construction – Short Term**
 - hot mixing
 - placing/compaction
- **In Service – Long Term**
 - hot climate worse than cool climate
 - summer worse than winter
- **Volatilization – Short term**
 - volatile components evaporate during construction

Pavement Behavior- Aging

- **Durability Cracks**
- **Mixture is Brittle**
 - random, wandering cracks
- **Depend on**
 - asphalt cement (lots)
 - mineral aggregate (some)
Current Ways to Measure Asphalt Properties

- Penetration
- Viscosity
Problems with Current System

- **Viscosity**
 - viscous effects only
- **Penetration**
 - empirical measure of viscous and elastic effects
- **No low Temperature Properties Measured**
- **Problems with Modified Asphalt Characterization**
- **Long Term Aging not Considered**
- **Specification Proliferation**
SHRP Program

• 5 year, $50 million on asphalt
• Products
 -- performance based spec for “binder”
 -- system for asphalt mixtures design and analysis
 -- performance based spec for mixtures
• Measure Physical Properties to Predict Performance

Asphalt Binder Projects

• High/Intermediate Temperature Properties
 -- dynamic shear rheometer (DSR)
 -- rotational viscometer (RV)
• Low Temperature Properties
 -- bending beam rheometer (BBR)
 -- direct tension tester (DTT)
• Durability Properties
 -- rolling thin film oven (RTFO)
 -- pressure aging vessel (PAV)
Dynamic Shear Rheometer- DSR

- **Evaluates**
 - elastic & viscous properties
 - time & temperature effects
- **Other Names**
 - oscillatory shear rheometers
 - dynamic rheometers
- **Output**
 - complex shear modulus (G^*)
 - phase angle (δ)
Fixed Plate Asphalt Oscillating Plate Applied Stress or Strain

Position of Oscillating Plate

A B C

1 cycle

Time

H.A.W

DSR Frequency of Oscillation

- 10 radians per second
- 1.59 Hz

360 degrees per circle = \(2\pi \) radian per circle

1 radian \(\approx \) 57.3 degrees

H.A.W
Dynamic Shear Rheometer

- Constant Stress DSR
 -- apply fixed torque to achieve approx shear strain
- Constant Strain DSR
 -- apply variable torque to achieve fixed shear strain

Rotational Viscometer- RV

- Evaluates
 -- handling & pumping properties
- ASTM D 4402
- Other Name
 -- Brookfield viscometer
 -- rotational coaxial cylinder viscometer
- Output
 -- viscosity at 135C
 -- viscosity temperature chart for mix design
Applied torque from motor
Asphalt sample
Sample Chamber 135 C

Motor and controller
Spindle extension
Thermo-container
Temperature controller
Bending Beam Rheometer - BBR

- **Evaluates**
 - low temperature stiffness properties

- **Output**
 - creep stiffness
 - m-value
Direct Tension Tester- DT

- **Evaluates**
 - low temperature ability to stretch
- **Output**
 - tensile strain at failure

Failure strain = \[
\frac{\text{Elongation at failure}}{\text{Length before test}}
\]
Binder Aging Methods

- **Rolling Thin Film Oven**
 - simulates aging from hot mixing & construction
 - determines mass loss
- **Pressure Aging Vessel**
 - simulates long term aging
- **Output**
 - aged samples for testing with DSR, BBR, & DTT
Pressure vessel
Sample rack
Sample pan
Asphalt

Air pressure
Temperature probe