

## **Pavement Materials**

- 1. Define aggregates.
- 2. What materials are used in aggregates, and what are the main sources?
- -3. What is meant by coarse aggregate, fines, crushed gravel, crushed rock, and concrete sand?
- 4. What is the nominal maximum size for fine aggregate? What is the actual maximum size usually specified?
- -5. Results of a sieve analysis on an aggregate are

| Pass 50 mm   | 100%  |
|--------------|-------|
| Pass 37.5 mm | 93.8% |
| Pass 25 mm   | 47.1% |
| Pass 19 mm   | 6.1%  |
| Pass 9.5 mm  | 1.8%  |

What is (a) the nominal maximum size, (b) the nominal size range, and (c) the term used to describe this size aggregate.

- -6. What size restrictions would you expect to find in the specifications for a 9.5-4.75 mm aggregate? Would this be a coarse or a fine aggregate?
- -7. Why is gradation of aggregates important?
- -8. What is the purpose of a washed test?
- -9. Give two reasons why excessive amounts of fines may be undesirable in aggregates.
- 10. Name three types of waste or recycled materials that are used as aggregates.
- 11. What type of gradation curve is desirable for an aggregate to be used as a highway base course? Why?
- -12. Following are results of a washed sieve analysis:

| Original mass          | = 608.5 g |
|------------------------|-----------|
| Dry mass after washing | = 578.2 g |

Sieve test:

| Sieve            | Mass Retained |
|------------------|---------------|
| 9.5 mm (3/8 in.) | 0.0 g         |
| 4.75 mm (No. 4)  | 96.2 g        |
| 2.36 mm (No. 8)  | 117.1 g       |
| 1.18 mm (No. 16) | 128.8 g       |
| 600 µm (No. 30)  | 105.3 g       |
| 300 µm (No. 50)  | 82.7 g        |
| 150 μm (No. 100) | 29.3 g        |
| 75 μm (No. 200)  | 14.7 g        |
| Pan              | 2.7 g         |

Complete the grain-size distribution calculations and draw the grain-size distribution curve.

13. Write a one-to- two-page report on the Aggregates laboratory tests as conducted in the laboratory visit.