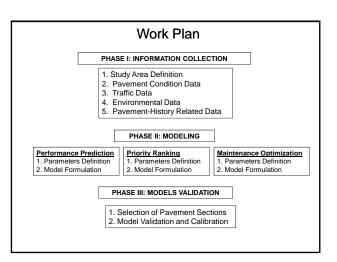
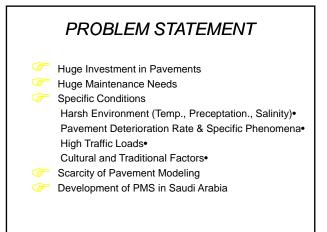
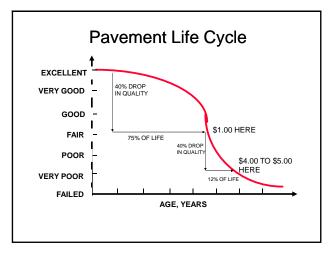


Modeling of Pavement Performance, Priority Ranking, and Budget Optimization for Road Network

INTRODUCTION

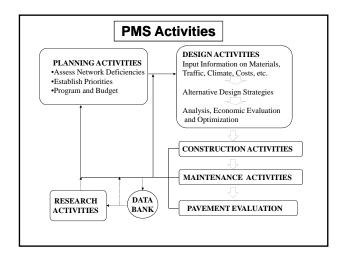

- Pavement is an important asset.
- Huge investment.
- Functions of pavements.
- Need for pavement evaluation.

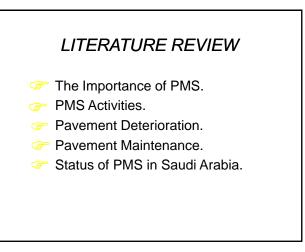

OBJECTIVES

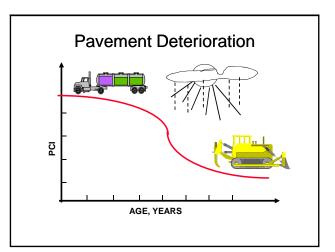

The main objective of this study is to develop an optimum models for pavement maintenance management system for the conditions of the Kingdom of Saudi Arabia.

OBJECTIVES...

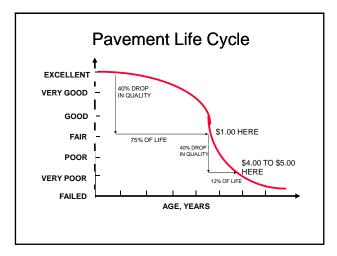
- Development of pavement performance prediction models.
- Development of pavement maintenance priority ranking procedures.
- Formulation of an optimization process for optimal maintenance funds allocation.
- Validation and verification of the above developed models and procedures.

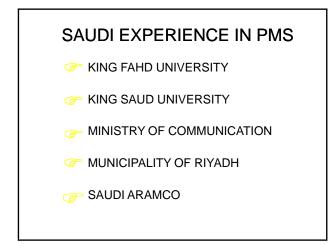



LITERATURE REVIEW

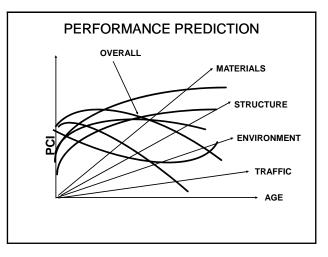


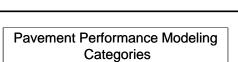

WHAT IS PMS ?


PMS is defined as the effecient coordination of different activities in pavement sector, such as: planning, design, construction, maintenance, evaluation, and research.






EXPECTED BENEFITS

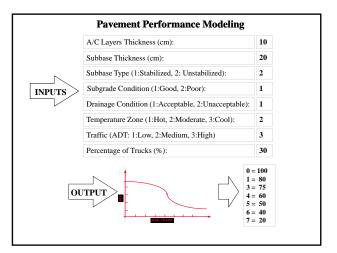

- Better Understanding of Pavement Behavior.
- Rational Priority Ranking for Maintenance.
- Cost-effective Maintenance Funds Spending.
- *F* Integration of Models in an Optimum PMS.

Pavement Performance Modeling

A true performance prediction model is the one that can calculate the expected serviceability-time (or traffic) relationship over entire design period, and also include the effects of any major rehabilitation.

Data-wise:

- 1. Purely Mechanistic
- 2. Mechanistic-Empirical
- 3. Regression
- 4. Subjective
- Analysis-Wise:
- 1. Deterministic
- 2. Probabilistic


PCI = f (AGE, THICH, SUB, TRAF, TRUCK, TEMP, DRAIN, SUBT, SUBT, INTR) WHERE: PCI = PAVEMENT CONDITION INDEX AGE = TIME FROM CONSTRUCTION DATE OR MAJOR REHABILITATION THICK = ASPHALT LAYER THICKNESS SUB = SUBBASE THICKNESS SUB = SUBBASE THICKNESS TRAF = AVERAGE DAILY TRAFFIC TRUCK= PERCENTAGE OF TRUCKS IN THE TRAFFIC MIX TEMP = MAX. PREVALT TEMP. DRAIN= DRAINAGE CONDITION SUBT = SUBBASE TYPE SUGT = SUBGRADE TYPE INTR = INTERACTIONS OF THE ABOVE FACTORS HYPOTHESIS: RED: PROPORTIONAL, GREEN: INVERSLY PROPORTIONAL

Performance Modeling

- 1. Regression Analysis
 - (Linear, Nonlinear, Combination)
- 2. Sampling
 - (Required No. of Data Points)
- 3. Model Statistical Evaluation
 - (Model Adequacy Tests)

Sample Size Determination

AC Thick1 AC Thick2 AC Thick3	3
SUBT1 SUBT2	2
SUBGT1 SUBGT2	2
TRAFF1 TRAFF2 TRAFF3	3
TRUCK1 TRUCK2 TRUCK3	3
TEMP1 TEMP2	2
DRAIN1 DRAIN2	2
TOTAL COMBINATION =	432
MIN OF 3 ENTRIES PER LEVEL, OVERAL	L = 1296

Pavement Maintenance Prioritization

Prioritization is a systematic process that determine the best ranking list of candidate sections for maintenance based on specific criteria. It ranks these sections in an order of importance or urgency for repair.

Prioritization Methods

- 1. Simple Subjective Ranking
- 2. Composite Index Methods
- 3. Ranking Based on Economics
- 4. Optimization Methods.

Proposed Priority Ranking Model

Where:

- PI = Priority Index (out of 100)
- W_i = Weight Priority Factor
- F_i = Priority Factor (out of 100)
- $\Sigma W_i = 100\%$

- 1. Pavement Condition
- 2. Operating traffic
- 3. Percentage of trucks
- 4. Riding Quality
- 5. Safety Conditions
- 6. Overall Maintenance Cost
- 7. Overall Importance

HYPOTHESIS: RED: PROPORTIONAL, GREEN: INVERSLY PROPORTIONAL

Proposed Priority Questionnaire

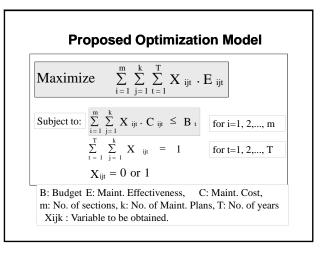
Factor	Description	Importance Weight (%)
1. Road Class	Major/Minor road; arterial, collector, or local; Commercial or Residential	10
2. Pavement Condition	Existence of pavement defects in the road surface such as cracking, rutting, potholes, settlements, and others.	30
3. Riding Quality	Existence of bumps, longitudinal corrugation, and unevenness in the road surface that cause high stresses to vehicles and discomfort to the road users (drivers and passengers); High road roughness.	
Safety Conditions Store and braking: Low skid resistance or surface friction; High accident rates (head to back type).		10
5. Maintenance Cost	The overall maintenance cost for the road section in need of maintenance, this includes closing and detouring costs.	15
6. Importance to Community	Overall importance to community determines by its distance from official buildings or important locations such as hospital, schools, etc. See Part II.	20
	OVERALL	100

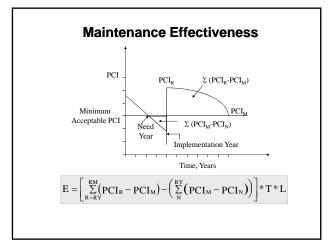
Proposed Priority Questionnaire

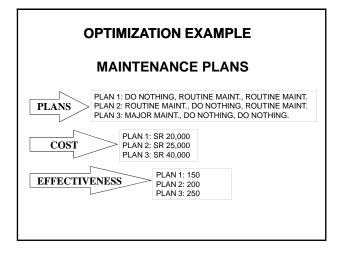
Factor	Description	Importance Weight (%)	
1. Road Class	Major/Minor road; arterial, collector, or local; Commercial or Residential	15	
2. Distance from CBD The distance from down-town or City Business Center determines t importance of the road section.		10	
 Distance from official ouildings (IMARAH, etc.) 	If the road section under consideration passing through an official complex may call for higher priority.	20	
4. Operating Traffic	Higher traffic volume roads calls for higher priority	25	
5. Percent of truck traffic	In some roads, presence of high truck traffic may call for higher priority.	10	
6. Distance from other mportant buildings	Other buildings such as Civil Defense, Hospitals, Schools, etc. may call for higher maintenance priority	20	
	OVERALL	100	

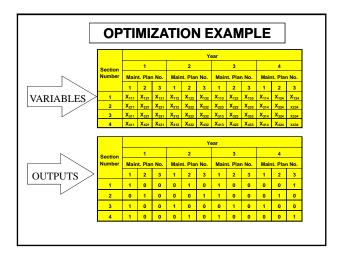
Priority Ranking Modeling

- 1. Factor Normalization
 - (100-POINT Scaling)
- 2. Factor Weight Calculation • (Effect of Qualification & Established Crireria)
- 3. Model Evaluation


FACTORS	VALUES	<u>WEIGHTS</u>	
PCI	70	0.10	
TRAFFIC	40	0.10	
TRUCKS	20	0.05	
RIDING QUALITY	70	0.15	
SAFETY	30	0.20	
COST	80	0.15	
IMPORTANCE	50	0.25	
= 75*0.10+40*0.10+20*0.05+ DI	-70*0.15+30*0.2 = 53	20+80*0.15+50*	0.2

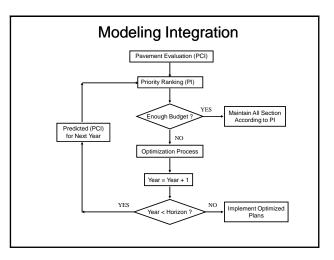

Maintenance Optimization


The systematic process to measure and adjust a policy, program, or funds allocation to produce the maximum benefits at the minimum cost.

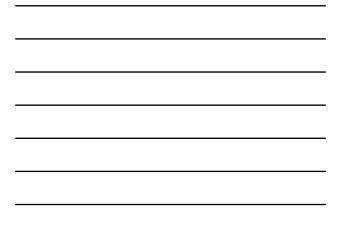

Proposed Optimization Procedure

- 1. Pavement Network Sectioning
- 2. Setting Planning Horizon
- 3. Maintenance Strategies Defined
- 4. PCI Prediction for Sections Over Years
- 6. Feasible Maintenance Plans
- 7. Priority Index Determination
- 8. Maintenance Plans Costs
- 9. Maintenance Plans Effectiveness
- 10. Optimization Run





NEEDED INFORMATION


- 1. Maintenance Strategies Adopted Locally.
- 2. Feasible Maintenance Plans
- 3. Acceptable Level of Pavement Condition
- 4. Maintenance Strategies Cost
- 5. Other Measures of Effectiveness (if any)
- 6. Budgeting Schemes

POTENTIAL SOURCES

MOC, MOMRA, S-ARMCO, LOCAL HIGHWAY AGENCIES, UNIVERSITY RESEARCHERS, ETC.

