Chapter 15

Design of Flexible Highway Pavements

METHODS

- I. Ministry of Transport Method
- **II. AASHTO Design Method**

I. Ministry of Transport Method

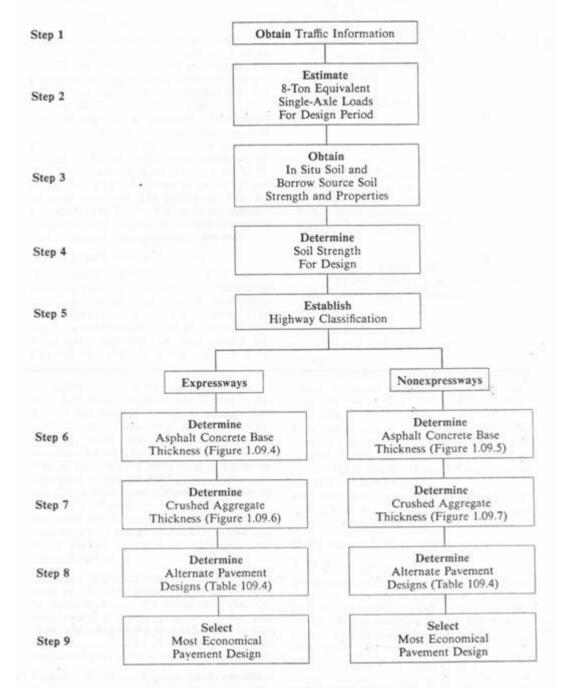
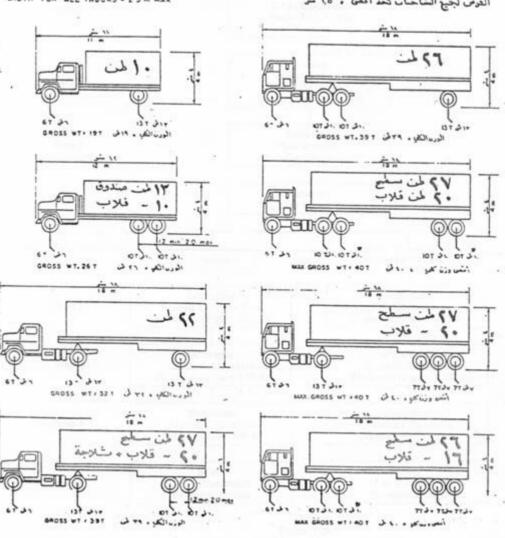


Figure 1.09.9

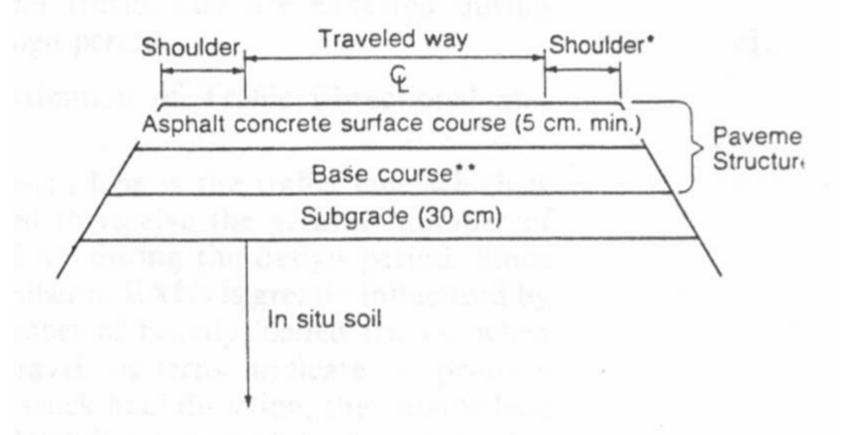
Design and Pavement Structure Selection

وزارة الموامسلان


MINISTRY OF COMMUNICATIONS

الأوزان القانونية للشاحنات LEGAL TRUCK WEIGHTS

الأرقام على صندوق الشاحة ترمز إلى الحمولة الصافيه للشاحنه.


WIDTH FOR ALL TRUCKS = 25 m MAX

العدض لجيم الشاحنات كعد أنمى ، ٢٥ سر

INFORMATION ON THIS CHART IS BASED ON TRAFFIC RESULATIONS (1380 H.)

الاحال المعودية النصوى المسحوح بها عدان لا تجاوز الوزه الاجالب . ٤ لم MAXIMUM ALLOWABLE AXLE LOADS . SMORE WEIGHT MOT TO EXCEED 40 TONS

- Asphalt concrete not required on shoulder surface courses for local and low volume roads.
- **Base course can include both asphalt concrete and aggregate base.

Minimum Base Course Requirements: Expressways—15 cm asphalt concrete Nonexpressways—5 cm asphalt concrete

Table 1.09.1 ADT (20) Growth Factors

$$\left(1 + \frac{AG}{100}\right)^{20}$$

Annual Growth (AG) %	0	2	4	5	6	7	8	10
Growth Factor (GF)	1.00	1.49	2.19	2.65	3.21	3.87	4.66	6.93

Table 1.09.2 Percentage of Total Truck Traffic In Design Lane

Number of Traffic Lanes (two directions)	Percentage of Trucks In Design Lane
2	50
4	45
6 or more	40

Table 1.09.3
Typical*
Truck Class and Weight
Distributions

Truck Class	Type SAL-Single Axle TAL-Tandem Axle	Percentage Total Trucks	Percent of ADT In Design Lane	Gross Vehicle Weight (Ton)	Avio Loade (Fome)			EAL Per Vehicle			
N.1	Single Unit 2 Axle	66	14.8	12	2.5 9.5		9.5	1.82			
	(2 SAL)	00	, 1.0	12	0.01		1.81	1.02			
N.2	Single Unit 3 Axle	13	2.9	18	3.5	3.5 14.5		0.86			
ANNA ATT	(1 SAL, 1 TAL)		1 1 1 1 1 1 1 1		0.03		0.83	0.00			
N.3	Multiple Unit 4 Axle	11	25	2.5	25	2.5	21	2.5	8.0	10.5	1.16
	(2 SAL, 1 TAL)		2.5		0.01	0.93	0.22	1.10			
N.4	Multiple Unit 5 Axle	10 23	10 22		2.3	25	3.5	10.0	11.5	0.63	
43.4	(1 SAL, 2 TAL)	10	2.3	25	0.03	0.18	0.32	0.53			
Tot	Totals/Average 100 22.5		CERTIFIED TO	100.17			1.48				

^{*}Based upon 1977 Truck Study by Italconsult and a survey by Italconsult/Rio/DarHandash, Ministry of Communication 1981.

^{**}Based upon Truck Volume = 50% ADT and 45% Truck in Design Lane.

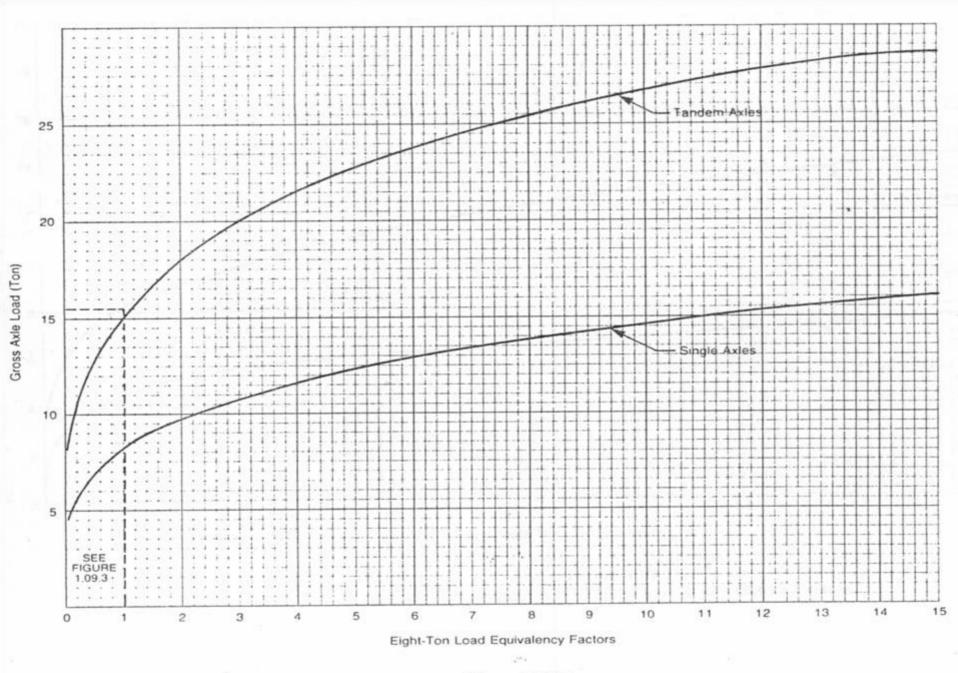


Figure 1.09.2 Eight-Ton, Single-Axle Load Equivalency (EAL) Factors

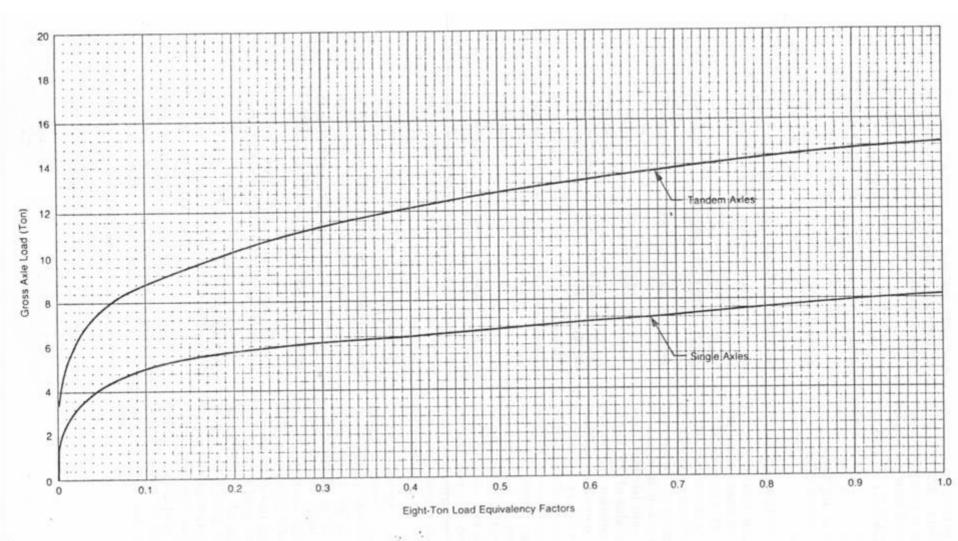


Figure 1.09.3
Eight-Ton, Single-Axle Load Equivalency (EAL) Factors

Problem Statement: A four-lane (two lanes each direction) rural roadway is proposed. Determine the total EAL for pavement design.

Given

From Local Traffic Study (two-way traffic):

5 Initial Traffic 3,000 Vehicle/Day in 1983 Estimated Traffic 5,000 Vehicle/Day in 2003

Average percentage of trucks through design period is 50 percent.

Truck Type and Axle Load Distribution: use data from Table 1.09.3

Truck Unit	Number of Trucks Units/100 Trucks		Average EAL ¹ Per Truc		Total EAL
Single Units Two Axle	66	×	1.82		120.12
Three Axle or More	13	×	0.86	=	11.18
Multiunit					
Three Axle	11	×	1.16	100	12.28
Four Axle	10	×	0.53	=	65.30
Total EAL/10	0 Trucks			==	148.88

Individual values should be obtained from detailed truck traffic and truck weight study and analysis.

Procedure

For single unit (two axle) average GVW is 12 ton with 2.5 ton (20.8%) on front axle and 9.5 ton (79.2%) on rear axle. From figures 1.09.2 and 1.09.3 EAL's are 0.01 and 1.81 respectively.

EAL/truck is 1.82. The same procedure is then used again to determine the EAL for each of the other travel unit categories, i.e. single unit 3 axle, multiunit 3 and 4 axles.

Average Trucks Per Day =
$$\frac{(3,000 + 5,000)}{2} \times \frac{50}{100} = 2,000 \text{ Trucks/Day}$$

Average Daily Trucks in Design Lane = (2,000) (.45) = 900 Trucks/Day (45% Table 1.09.2)

Total Trucks in Design Lane for Design Period = (900 Trucks/Day) (365 Days/Year) (20 Years) = 6,570,000 Trucks

Total EAL for Pavement Design = (6.570 × 10° Trucks) (148.88 EAL/100 Trucks) = 9.781 × 10° EAL

Where detailed traffic analysis is not available

and upon approval of the MOC under provisions of HDM-1-1.06B13, the following equation shall be used to determine the total number of equivalent 8-ton loads.

$$EAL = 1,220 ADT (0) + ADT (20)$$

where EAL = Total number of equivalent 8-ton axle loads

ADT (0) = Initial ADT

ADT (20) = ADT at end of 20-year design period.

2. Soil Considerations

The soils directly below a pavement structure greatly contribute to the overall performance of the pavement. The strength and variability of this material must be considered in the determination of flexible pavement thickness requirements. The material may either be native soils such as in cut sections or may be imported material from designated sources as in fill sections. In either case, representative samples of this material must be collected and tested in the laboratory or in place. A minimum depth of 1.0 m below the top of the subgrade surface should be considered when selecting representative samples. Testing must only be performed on samples that are in a condition that accurately represents the after construction condition of the soil directly beneath the pavement structure. Therefore, density and moisture controls that are required during construction must also apply to remolded samples that are used for strength determinations.

The soil strength input value should be determined by either using the California Bearing, Ratio (CBR) MRDTM 213 or the Resilient Modulus (see Asphalt Institute Manual MS-1). The soil support value used in the pavement design shall be equal to the 90th percentile of the representative samples of either the naturally occurring soil below the subgrade or the material proposed for subgrade construction. The lower of these 90th percentile values shall be selected as the soil strength for pavement design. An example illustrating the determination of the soil strength value is given below. The soil strength value may vary between sections within a project dependent upon economic analysis of the entire pavement structure, subgrade, and naturally occurring in situ material.

Example of Selection of Soil Strength Value

Field Samples and Laboratory Test Results						
Borrow for Subgrade CBR	On-Site Material at Subgrade CBR					
13	12					
25	18					
30	8					
26	17					
32	20					

		Highest					
Borrow CBR Percent of Tests Greater Than or Equal	32 20%	30 40%	26 60%	25 80%	13 100%		
On-Site Material CBR Percent of Tests Greater Than or Equal to	20 20%			12 80%	8 100%		

CBR Value

90th Percentile Values: Borrow Material CBR = 20	
On-Site Material CBR = 10.5 Soil Strength of CBR = 10 is Used for Design	r

3. Base Course Thickness Requirements

In addition to satisfying the minimum structural requirements given in 2-1.09A2, all pavements shall meet minimum base course thickness requirements for the local soil or borrow source conditions and estimated traffic loads. Figure 1.09.4 shall be used to determine minimum asphalt concrete base thickness requirements for the soil and traffic on expressways. Figure 1.09.5 shall be used to establish minimum asphalt concrete base requirements for traffic and soil conditions on all roadways other than expressways. Figure 1.09.6 and Figure 1.09.7 shall be used to determine the amount of crushed aggregate base needed to meet requirements. When the asphalt concrete thickness values from Figures 1.09.4 and 1.09.5 exceed 15 cm and 5 cm respectively, 30 cm of aggregate base is required.

Table 1.09.4 Pavement Material Equivalencies

	Substitution Ratio ¹
Base Course	
Asphalt Concrete (Plant Mix)	1
Asphalt Concrete (Road Mix)	1.75
Untreated Aggregates	
Crushed Aggregate	2.5
Natural Gravels	3
Treated Aggregate	
Bituminous-Treated	
Aggregates	2
Lime-Treated Aggregates	2
Cement-Treated Aggregates	2
Subgrade	
Select Material (Soil)	5
Bituminous-Treated Soil	3.5
Lime-Treated Soil	3.5
Cement-Treated Soil	3.5

'Millimeters of material needed to replace one millimeter of the asphalt concrete payement.

Example of Alternative Pavement Designs

Problem Statement: Determine the most costeffective pavement section that is structurally equivalent to the following:

5 cm asphalt concrete surface (AC) 15 cm asphalt concrete base (AC) 22 cm crushed aggregate base (CAB) 30 cm subgrade borrow Design soil CBR = 10 Total traffic = 2.25 × 10⁶ EAL

Typical pavement section consists of 3.65 m travel way, 3.00 m shoulders and 4:1 fore-slopes.

Procedure: Since the asphalt concrete surface and base requirements are at minimum levels established by 2-1.09A2, only the crushed aggregate base and subgrade are subject to alternate design.

Determination of which alternate materials are to be compared should be based upon availability, feasibility, and economic analysis. Assume the asphalt concrete (AC) and limetreated aggregate (LTA) meet these criteria for base material and the lime-treated soil (LTS) meets criteria for alternative subgrade materials.

To provide structurally equivalent sections, the following equation must be satisfied:

$$\frac{T_A \times SR_B}{SR_A} = T_B$$

where T_A = Thickness of Material A SR_A = Substitution Ratio of Material A T_B = Thickness of Material B

SR_B = Substitution Ratio of Material I

The thickness of lime-treated aggregates required for 22 cm of CAB is

$$\frac{(22 \text{ cm}) (2)}{(2.5)} = T_{LTA}$$

 $T_{LTA} = 17.6$ cm, use 18 cm

If asphalt concrete base were substituted, the required thickness would be

$$\frac{(22 \text{ cm}) (1)}{(2.5)} = T_{AC}$$

 $T_{AC} = 8.8$ cm, use 9 cm

The amount of lime-treated soil required to replace 30 cm of borrow soil is

$$\frac{(30 \text{ cm}) (3.5)}{5} = T_{LTS}$$

$$T_{LTS} = 21$$
 cm

From Figure 1.09.8, a soil strength CBR of 10 requires a 42 cm of cover for 2.25 × 10⁴ EAL. Therefore, any of the following pavement structural sections except Alternative B are acceptable:

			4.			1.
	A				B	
5	cm	AC surface		5	cm	AC surface
15	cm	AC base		24	cm.	AC base
22	cm	CAB		30	cm	subgrade borrow
30	cm	subgrade bo	rrov	W		

C	D
5 cm AC surface	5 cm AC surface
15 cm AC base	24 cm AC base
18 cm LTA base	21 cm LTS
30 cm subgrade born	row

5 cm AC surface 15 cm AC base 18 cm LTA base 21 cm LTS

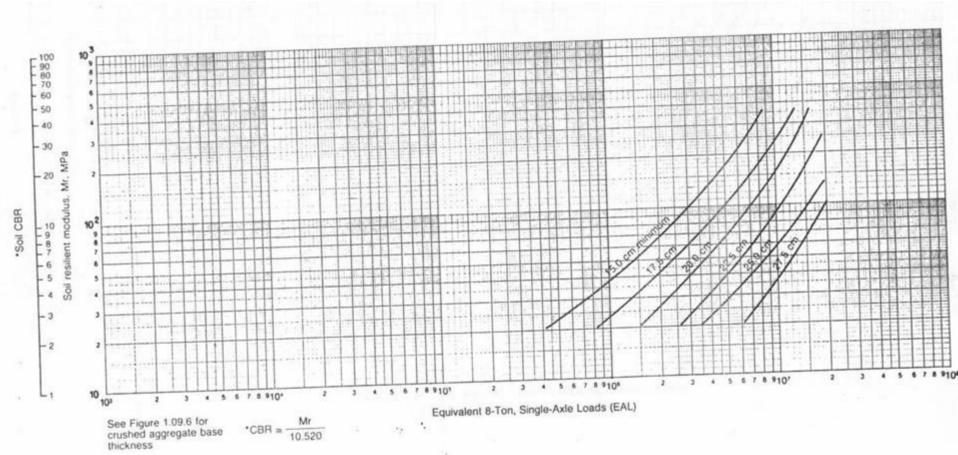


Figure 1.09.4
Asphalt Concrete Base Course Thickness Requirements
For Expressways

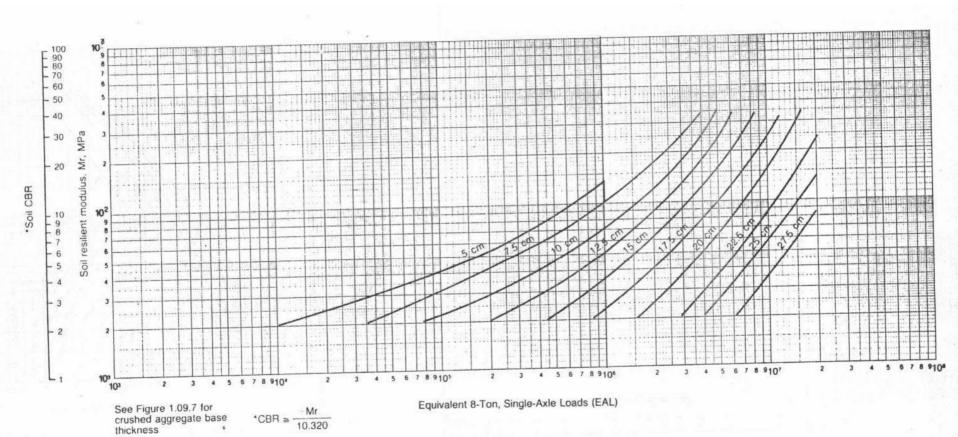
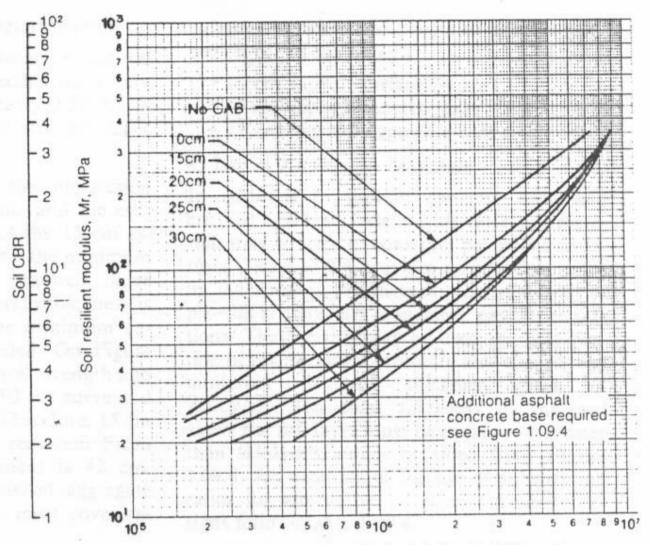



Figure 1.09.5
Asphalt Concrete Base Course Thickness Requirements
For Roads Other Than Expressways

Equivalent 8-Ton, Single-Axle Loads (EAL)

Figure 1.09.6 Crushed Aggregate Base Requirements For Expressways

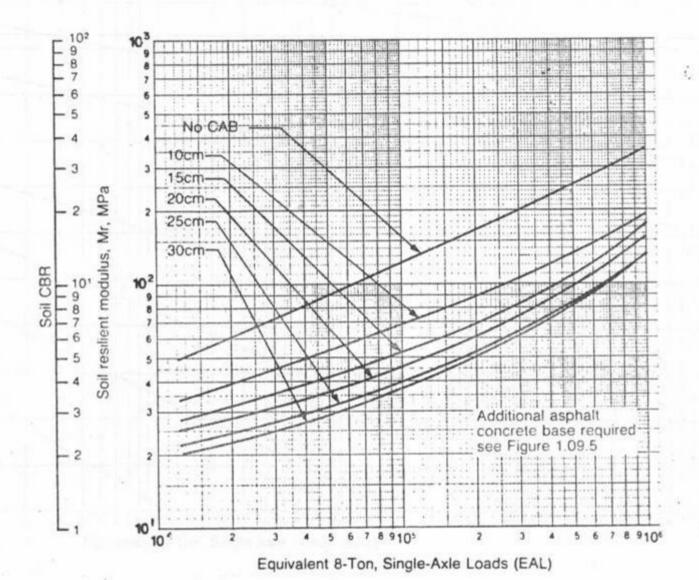


Figure 1.09.7
Crushed Aggregate Base Requirements
For Roads Other Than Expressways

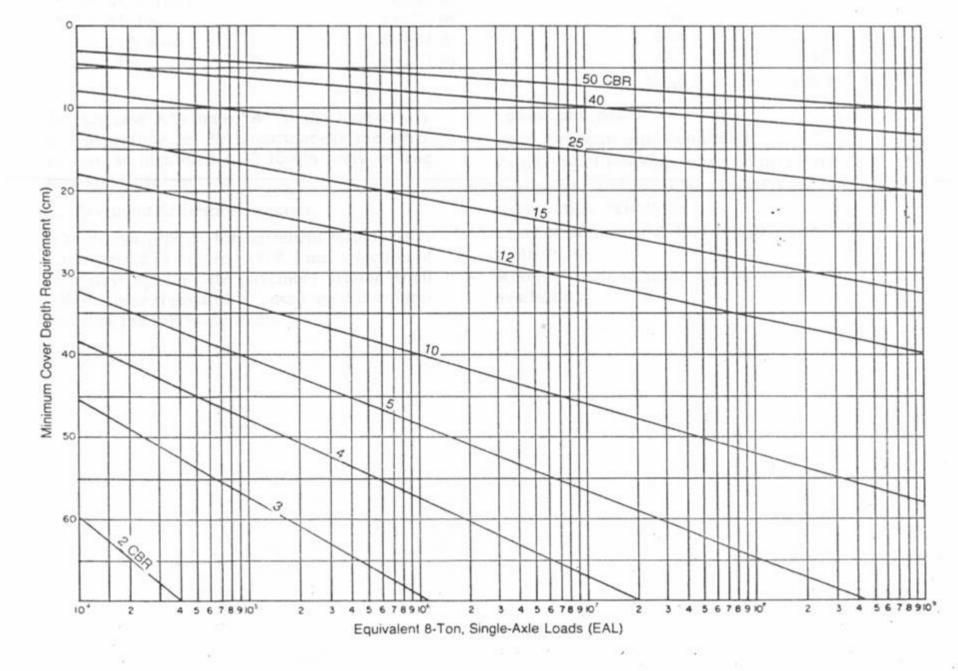


Figure 1.09.8 Cover Requirements

5. Cost Comparison of Acceptable Alternatives

Quantity for One Meter Length	Unit Price (Riyals)	Cost
.6525 m³	160	104.40
1.9875 m'	150	298.13
3.0000 m ³	50	150.00
4.2300 m	15	63.45
	Total	615.98
.6525 m ³	160	104.40
1.9875 m ¹	150	298.13
2.4444 m' .	110	268.88
4.2180 m ³	15	63.27
	Total	734.68
.6525 m	160	104.40
* 3.2016 m		480.24
2.8959 m ³	80	231.67
	Total	816.31
.6525 m ³		104.40
1.9875 m ³		298.13
2.4444 m'	110	268.88
2.9337 m ³	80	234.70
	Total	906.11
	One Meter Length .6525 m 1.9875 m 3.0000 m 4.2300 m 4.2300 m .6525 m 1.9875 m 2.4444 m 4.2180 m .6525 m 3.2016 m 2.8959 m 1.9875 m 2.4444 m	One Meter Length (Riyals) .6525 m² 160 1.9875 m² 150 3.0000 m² 50 4.2300 m² 15 Total .6525 m² 160 1.9875 m² 150 2.4444 m² 150 2.8959 m³ 80 Total .6525 m² 160 1.9875 m³ 150 2.4444 m² 110 2.9337 m³ 80

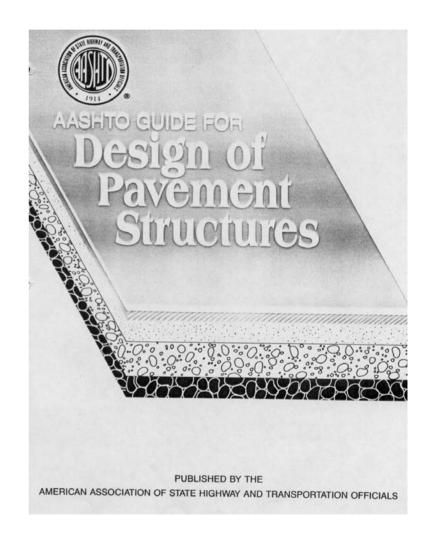
In this case Alternate "A" is the least costly and depending on the importance of the other factors as identified in 2.109B6, may be the best structural section.

6. Pavement Structure Selection

The design process for pavement structures is summarized in Figure 1.09.9. Final selection of the most appropriate pavement section shall follow these steps and be based upon consideration of the following items:

- Lowest unit cost.
- · Local environmental conditions.
- · Variability of proposed material properties.
- Availability and local history of required construction techniques.
- Level of performance that the pavement is to maintain.
- Routine maintenance requirements and availability.

II. AASHTO Design Method


AASHTO_® Guide for Design of Pavement Structures 1993

Published by the American Association of State Highway and Transportation Officials

444 N. Capitol Street, N.W., Suite 249 Washington, D.C. 20001

© Copyright, 1986, 1993 by the American Association of State Highway and Transportation Officials. *All Rights Reserved.* Printed in the United States of America. This book, or parts thereof, may not be reproduced in any form without written permission of the publishers.

Highway Conditions

Analysis Period (years)

High volume urban
High volume rural
Low volume paved
Low volume
aggregate surface

10 - 20

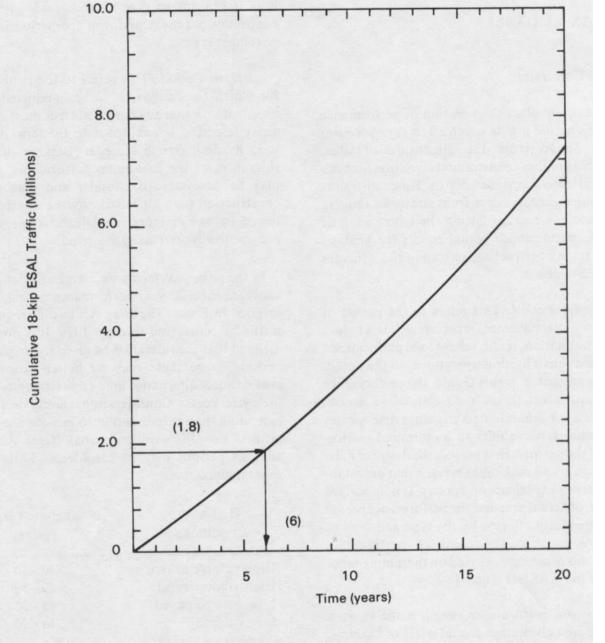


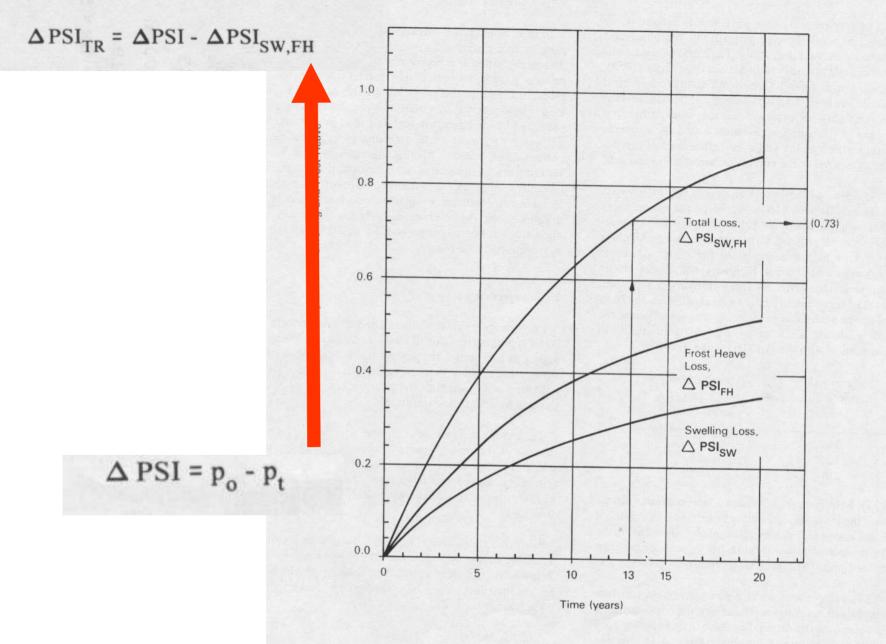
Figure 2.1. Example plot of cumulative 18-kip ESAL traffic versus time.

$$w_{18} = D_D \times D_L \times \hat{w}_{18}$$

where

- D_D = a directional distribution factor, expressed as a ratio, that accounts for the distribution of ESAL units by direction, e.g., east-west, north-south, etc.,
- D_L = a lane distribution factor, expressed as a ratio, that accounts for distribution of traffic when two or more lanes are available in one direction.
- \hat{w}_{18} = the cumulative two-directional 18-kip ESAL units predicted for a specific section of highway during the analysis period (from the planning group).

No. of Lanes In Each Direction	Percent of 18-kip ESAL In Design Lane	
	100	
2	80 - 100	
3	60 - 80	
4	50 - 75	



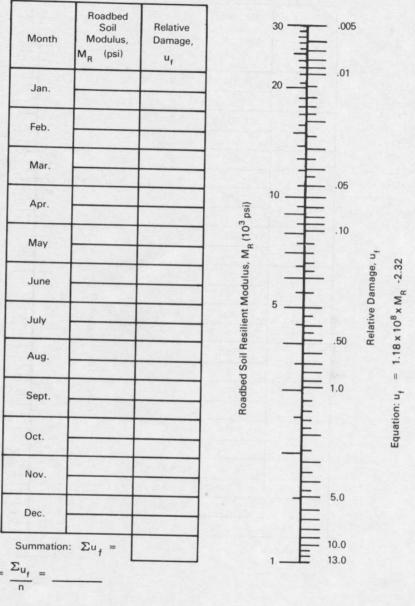
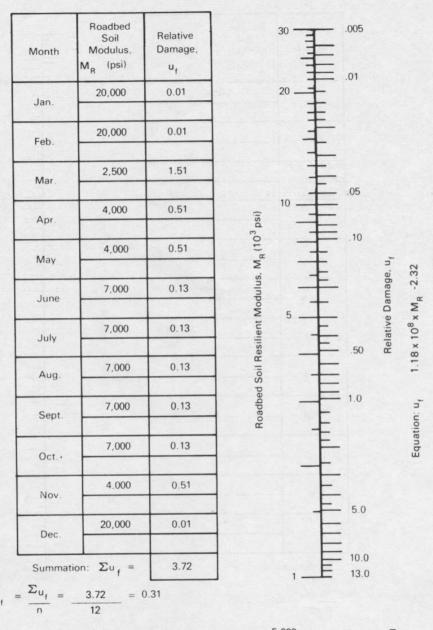

Figure 2.2. A conceptual example of the environmental serviceability loss versus time graph that may be developed for a specific location.

Table 2.2. Suggested levels of reliability for various functional classifications.

Functional Classification	Recommended Level of Reliability	
	Urban	Rural
Interstate and other freeways	85 - 99.9	80 - 99.9
Principal Arterials	80 - 99	75 - 95
Collectors	80 - 95	75 - 95
Local	50 - 80	50 - 80


Note: Results based on a survey of the AASHTO Pavement Design Task

Values of S developed at the AASHO Road Test did not include traffic error. However, the performance prediction error developed at the Road Test was .25 for rigid and .35 for flexible pavements. This corresponds to a total standard deviation for traffic of 0.35 and 0.45 for rigid and flexible pavements, respectively.

Effective Roadbed Soil Resilient Modulus, M_R (psi) = _____ (corresponds to \overline{u}_i)

Figure 2.3. Chart for estimating effective roadbed soil resilient modulus for flexible pavements designed using the serviceability criteria.

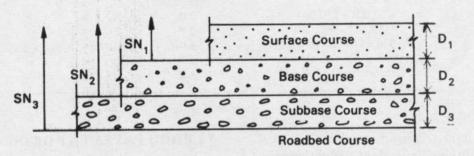
Effective Roadbed Soil Resilient Modulus, M_R (psi) = 5,000 (corresponds to \overline{u}_t)

Average:

Figure 2.4. Chart for estimating effective roadbed soil resilient modulus for flexible pavements designed using the serviceability criteria.

$$SN = \sum_{i=1}^{\infty} a_i D_i$$

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$


where

- a₁, a₂, a₃ = layer coefficients representative of surface, base, and subbase courses, respectively (see Section 2.3.5),
 - D₁, D₂, D₃ = actual thicknesses (in inches) of surface, base, and subbase courses, respectively,
 - m₂, m₃ = drainage coefficients for base and subbase layers, respectively (see Section 2.4.1).

3.1.1 Determine Required Structural Number

Figure 3.1 presents the nomograph recommended for determining the design structural number (SN) required for specific conditions, including

- (1) the estimated future traffic, W₁₈ (Section 2.1.2), for the performance period,
- (2) the reliability, R (Section 2.1.3), which assumes all input is at average value,
- the overall standard deviation, S_o (Section 2.1.3),
- (4) the effective resilient modulus of roadbed material, M_R (Section 2.3.1), and
- (5) the design serviceability loss, $\triangle PSI = p_o p_t$ (Section 2.2.1).

$$D^*_1 \stackrel{>}{=} \frac{SN_1}{a_1}$$

$$SN^*_1 = a_1D^*_1 \stackrel{>}{=} SN_1$$

$$D^*_2 \stackrel{>}{=} \frac{SN_2 - SN^*_1}{a_2m_2}$$

$$SN^*_1 + SN^*_2 \stackrel{>}{=} SN_2$$

$$D^*_3 \stackrel{>}{=} \frac{SN_3 - (SN^*_1 + SN^*_2)}{a_3m_3}$$

- 1) a, D, m and SN are as defined in the text and are minimum required values.
- An asterisk with D or SN indicates that it represents the value actually used, which
 must be equal to or greater than the required value.

Figure 3.2. Procedure for determining thicknesses of layers using a layered analysis approach.

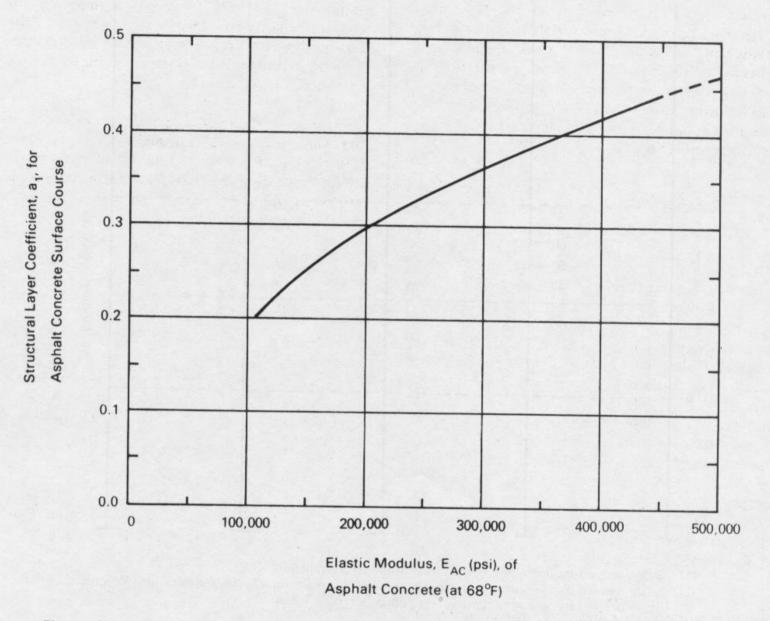
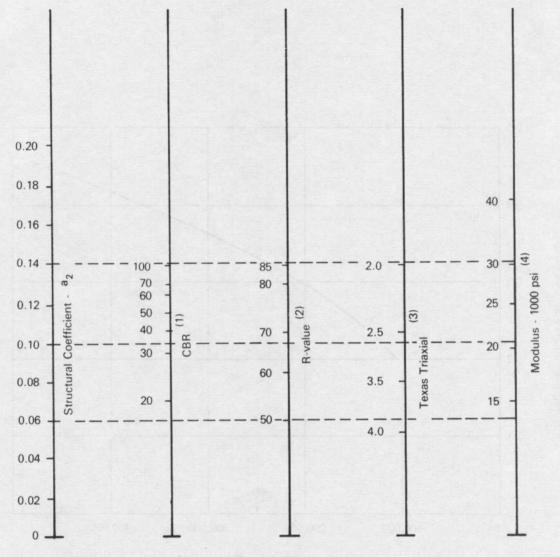
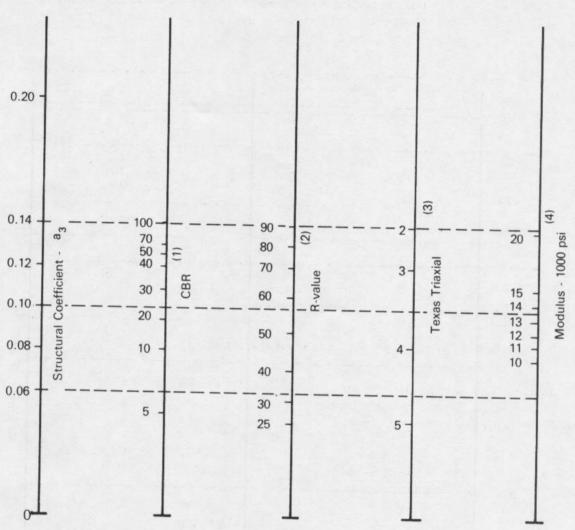




Figure 2.5. Chart for estimating structural layer coefficient of dense-graded asphalt concrete based on the elastic (resilient) modulus (3).

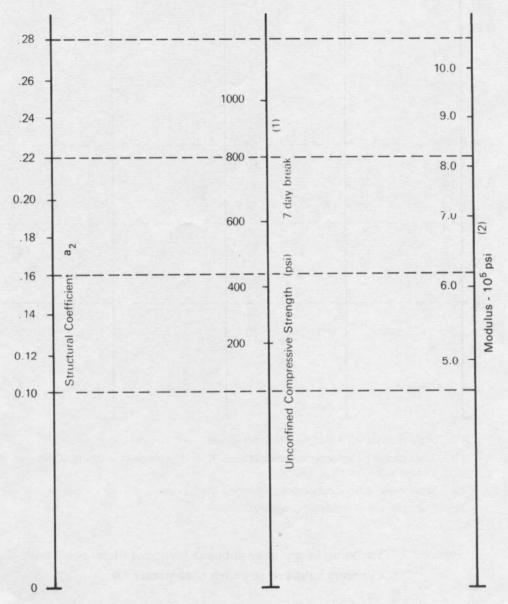

- (1) Scale derived by averaging correlations obtained from Illinois.
- (2) Scale derived by averaging correlations obtained from California, New Mexico and Wyoming.
- (3) Scale derived by averaging correlations obtained from Texas.
- (4) Scale derived on NCHRP project (3).

Figure 2.6. Variation in granular base layer coefficient (a $_2$) with various base strength parameters (3).

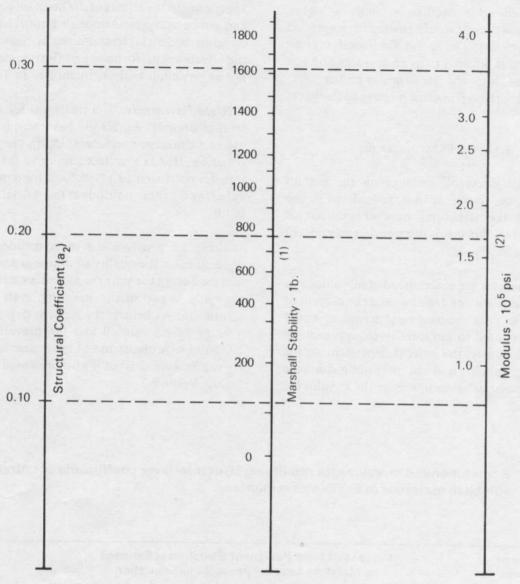

- (1) Scale derived from correlations from Illinois.
- (2) Scale derived from correlations obtained from The Asphalt Institute, California, New Mexico and Wyoming.
- (3) Scale derived from correlations obtained from Texas.
- (4) Scale derived on NCHRP project (3).

Figure 2.7. Variation in granular subbase layer coefficient (a₃) with various subbase strength parameters (3).

- (1) Scale derived by averaging correlations from Illinois, Louisiana and Texas.
- (2) Scale derived on NCHRP project (3).

Figure 2.8. Variation in a for cement-treated bases with base strength parameter (3).

- (1) Scale derived by correlation obtained from Illinois.
- (2) Scale derived on NCHRP project (3).

Figure 2.9. Variation in a₂ for bituminous-treated bases with base strength parameter (3).

Quality of Drainage	Water Removed Within
Excellent	2 hours
Good	1 day
Fair	1 week
Poor	1 month
Very Poor	(water will not drain)

Table 2.4 Recommended m_i values for modifying structural layer coefficients of untreated base and sub-base materials in flexible pavements.

Quality of Drainage	Percent of Time Pavement Structure is Exposed to Moisture Levels Approaching Saturation							
	Less Than 1%	1 - 5%		Greater Than 25%				
Excellent	1.40 - 1.35	1.35 - 1.30	1.30 - 1.20	1.20				
Good	1.35 - 1.25	1.25 - 1.15	1.15 - 1.00	1.00				
Fair	1.25 - 1.15	1.15 - 1.05	1.00 - 0.80	0.80				
Poor	1.15 - 1.05	1.05 - 0.80	0.80 - 0.60	0.60				
Very Poor	1.05 - 0.95	0.95 - 0.75	0.75 - 0.40	0.40				

$$SN = \sum_{i=1}^{\infty} a_i D_i$$

$$SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$$

where

- a₁, a₂, a₃ = layer coefficients representative of surface, base, and subbase courses, respectively (see Section 2.3.5),
 - D₁, D₂, D₃ = actual thicknesses (in inches) of surface, base, and subbase courses, respectively,
 - m₂, m₃ = drainage coefficients for base and subbase layers, respectively (see Section 2.4.1).

NOMOGRAPH SOLVES:
$$log_{10} = z_R^*s_0^* + 9.36*log_{10}(SN+1) - 0.20 + \frac{log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.40 + \frac{1094}{(SN+1)^{5.19}}} + 2.32*log_{10}^{M} - 8.07$$

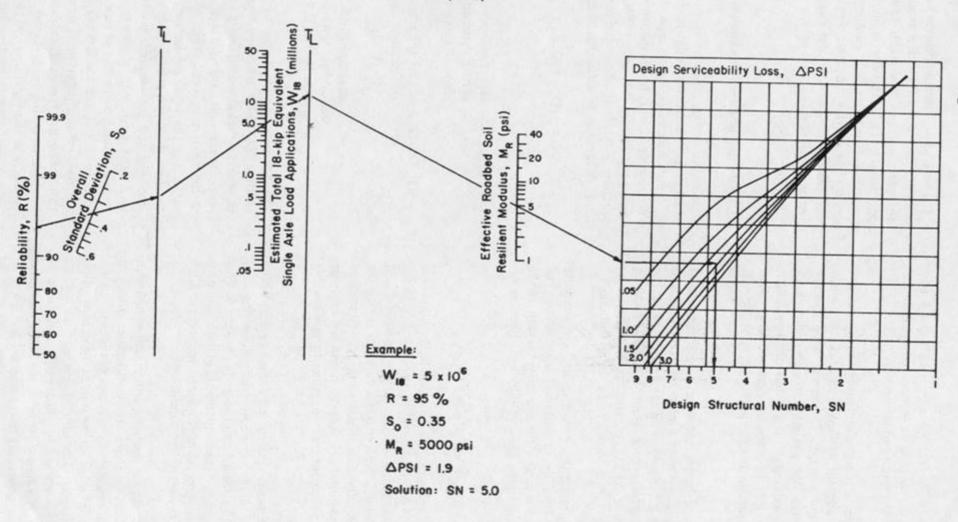
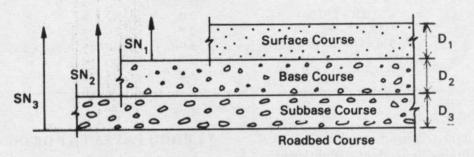



Figure 3.1. Design chart for flexible pavements based on using mean values for each input.

$$D^*_1 \ge \frac{SN_1}{a_1}$$

$$SN^*_1 = a_1D^*_1 \ge SN_1$$

$$D^*_2 \ge \frac{SN_2 - SN^*_1}{a_2m_2}$$

$$SN^*_1 + SN^*_2 \ge SN_2$$

$$D^*_3 \ge \frac{SN_3 - (SN^*_1 + SN^*_2)}{a_3m_3}$$

- 1) a, D, m and SN are as defined in the text and are minimum required values.
- An asterisk with D or SN indicates that it represents the value actually used, which
 must be equal to or greater than the required value.

Figure 3.2. Procedure for determining thicknesses of layers using a layered analysis approach.

Minimum Thickness (inches)

Traffic, ESAL'S	Asphalt Concrete	Aggregate Base
Less than 50,000	1.0 (or surface	4
50,001 - 150,000	treatment)	
150,001 - 500,000	2.5	4
500,001 - 2,000,000	3.0	6
2,000,001 - 7,000,000	3.5	6
Greater than 7,000,000	4.0	6

Table D.1. Axle load equivalency factors for flexible pavements, single axles and p_t of 2.0.

Axle Load		Pavement Structural Number (SN)							
(kips)	1	2	3	4	5	6			
2	.0002	.0002	.0002	.0002	0000	2000			
2 4	.002	.003	.002	.002	.0002	.0002			
6	.009	.012	.011	.010	.002	.002			
8	.030	.035	.036	.033	.009	.009			
10	.075	.085	.090	.085	.031	.029			
12	.165	.177	.189	.183	.174	.076			
14	.325	.338	.354	.350	.338	.168			
16	.589	.598	.613	.612	.603	.331			
18	1.00	1.00	1.00	1.00	1.00	.596			
20	1.61	1.59	1.56	1.55	1.57	1.00			
22	2.49	2.44	2.35	2.31	2.35	1.59			
24	3.71	3.62	3.43	3.33	3.40	2.41			
26	5.36	5.21	4.88	4.68	4.77	3.51			
28	7.54	7.31	6.78	6.42	6.52	4.96			
30	10.4	10.0	9.2	8.6	8.7	6.83			
32	14.0	13.5	12.4	11.5	11.5	9.2			
34	18.5	17.9	16.3	15.0	14.9	15.6			
36	24.2	23.3	21.2	19.3	19.0	19.9			
38	31.1	29.9	27.1	24.6	24.0	25.1			
40	39.6	38.0	34.3	30.9	30.0	31.2			
42	49.7	47.7	43.0	38.6	37.2	38.5			
44	61.8	59.3	53.4	47.6	45.7	47.1			
46	76.1	73.0	65.6	58.3	55.7	57.0			
48	92.9	89.1	80.0	70.9	67.3	68.6			
50	113.	108.	97.	86.	81.	82.			

Table D.2. Axle load equivalency factors for flexible pavements, tandem axles and $\mathbf{p_t}$ of 2.0.

Axle Load		Pavement Structural Number (SN)								
(kips)	1	2	3	4	5	6				
2	.0000	.0000	.0000	.0000	.0000	.0000				
4	.0003	.0003	.0003	.0002	.0002	.0002				
6	.001	.001	.001	.001	.001	.001				
8	.003	.003	.003	.003	.003	.002				
10	.007	.008	.008	.007	.006	.006				
12	.013	.016	.016	.014	.013	.012				
14	.024	.029	.029	.026	.024	.023				
16	.041	.048	.050	.046	.042	.040				
18	.066	.077	.081	.075	.069	.066				
20	.103	.117	.124	.117	.109	.105				
22	.156	.171	.183	.174	.164	.158				
24	.227	.244	.260	.252	.239	.231				
26	.322	.340	.360	.353	.338	.329				
28	.447	.465	.487	.481	.466	.455				
30	.607	.623	.646	.643	.627	.617				
32	.810	.823	.843	.842	.829	.819				
34	1.06	1.07	1.08	1.08	1.08	1.07				
36	1.38	1.38	1.38	1.38	1.38	1.38				
38	1.76	1.75	1.73	1.72	1.73	1.74				
40	2.22	2.19	2.15	2.13	2.16	2.18				
42	2.77	2.73	2.64	2.62	2.66	2.70				
44	3.42	3.36	3.23	3.18	3.24	3.31				
46	4.20	4.11	3.92	3.83	3.24	4.02				
48	5.10	4.98	4.72	4.58	4.68					
50	6.15	5.99	5.64			4.83				
52	7.37	7.16		5.44	5.56	5.77				
54	8.77		6.71	6.43	6.56	6.83				
		8.51	7.93	7.55	7.69	8.03				
56	10.4	10.1	9.3	8.8	9.0	9.4				
58	12.2	11.8	10.9	10.3	10.4	10.9				
60	14.3	13.8	12.7	11.9	12.0	12.6				
62	16.6	16.0	14.7	13.7	13.8	14.5				
64	19.3	18.6	17.0	15.8	15.8	16.6				
66	22.2	21.4	19.6	18.0	18.0	18.9				
68	25.5	24.6	22.4	20.6	20.5	21.5				
70	29.2	28.1	25.6	23.4	23.2	24.3				
72	33.3	32.0	29.1	26.5	26.2	27.4				
74	37.8	36.4	33.0	30.0	29.4	30.8				
76	42.8	41.2	37.3	33.8	33.1	34.5				
78	48.4	46.5	42.0	38.0	37.0	38.6				
80	54.4	52.3	47.2	42.5	41.3	43.0				
82	61.1	58.7	52.9	47.6	46.0	47.8				
84	68.4	65.7	59.2	53.0	51.2	53.0				
86	76.3	73.3	66.0	59.0	56.8	58.6				
88	85.0	81.6	73.4	65.5	62.8	64.7				
90	94.4	90.6	81.5	72.6	69.4	71.3				

Table D.3. Axle load equivalency factors for flexible pavements, triple axles and $\mathbf{p_t}$ of 2.0.

Axle Load		Pavement Structural Number (SN)							
(kips)	1	2	3	4	5	6			
2	.0000	.0000	.0000	.0000	.0000	.0000			
4	.0001	.0001	.0001	.0001	.0001	.0001			
6	.0004	.0004	.0003	.0003	.0003	.0003			
8	.0009	.0010	.0009	.0008	.0007	.0003			
10	.002	.002	.002	.002	.002	.001			
12	.004	.004	.004	.003	.003	.003			
14	.006	.007	.007	.006	.006	.005			
16	.010	.012	.012	.010	.009	.009			
18	.016	.019	.019	.017	.015	.015			
20	.024	.029	.029	.026	.024	.023			
22	.034	.042	.042	.038	.035	.034			
24	.049	.058	.060	.055	.051	.048			
26	.068	.080	.083	.077	.071	.068			
28	.093	.107	.113	.105	.098	.094			
30	.125	.140	.149	.140	.131	.126			
32	.164	.182	.194	.184	.173	.167			
34	.213	.233	.248	.238	.225	.217			
36	.273	.294	.313	.303	.288	.279			
38	.346	.368	.390	.381	.364	.353			
40	.434	.456	.481	.473	.454	.443			
42	.538	.560	.587	.580	.561	.548			
44	.662	.682	.710	.705	.686	.673			
46	.807	.825	.852	.849	.831	.818			
48	.976	.992	1.015	1.014	.999	.987			
50	1.17	1.18	1.20	1.20	1.19	1.18			
52	1.40	1.40	1.42	1.42	1.41	1.40			
54	1.66	1.66	1.66	1.66	1.66	1.66			
56	1.95	1.95	1.93	1.93	1.94	1.94			
58 60	2.29	2.27	2.24	2.23	2.25	2.27			
62	2.67	2.64	2.59	2.57	2.60	2.63			
64	3.10	3.06	2.98	2.95	2.99	3.04			
66	3.59	3.53	3.41	3.37	3.42	3.49			
68	4.13	4.05	3.89	3.83	3.90	3.99			
70	4.73	4.63	4.43	4.34	4.42	4.54			
72	5.40	5.28	5.03	4.90	5.00	5.15			
74	6.15	6.00	5.68	5.52	5.63	5.82			
76	6.97 7.88	6.79	6.41	6.20	6.33	6.56			
78	8.88	7.67	7.21	6.94	7.08	7.36			
80	9.98	8.63	8.09	7.75	7.90	8.23			
82	11.2	9.69	9.05	8.63	8.79	9.18			
84	12.5	10.8	10.1	9.6	9.8	10.2			
86	13.9	12.1	11.2	10.6	10.8	11.3			
88	15.5	13.5	12.5	11.8	11.9	12.5			
90	17.2	15.0 16.6	13.8 15.3	13.0 14.3	13.2	13.8			
					14.5	15.2			

Table D.4. Axle load equivalency factors for flexible pavements, single axles and p_t 2.5.

Axle Load							
(kips)	1	2	3	4	5	6	
2	.0004	.0004	.0003	.0002	.0002	.0002	
2 4	.003	.004	.004	.003	.002	.002	
6	.011	.017	.017	.013	.010	.009	
8	.032	.047	.051	.041	.034	.031	
10	.078	.102	.118	.102	.088	.080	
12	.168	.198	.229	.213	.189	.176	
14	.328	.358	.399	.388	.360	.342	
16	.591	.613	.646	.645	.623	.606	
18	1.00	1.00	1.00	1.00	1.00	1.00	
20	1.61	1.57	1.49	1.47	1.51	1.55	
22	2.48	2.38	2.17	2.09	2.18	2.30	
24	3.69	3.49	3.09	2.89	3.03	3.27	
26	5.33	4.99	4.31	3.91	4.09	4.48	
28	7.49	6.98	5.90	5.21	5.39	5.98	
30	10.3	9.5	7.9	6.8	7.0	7.8	
32	13.9	12.8	10.5	8.8	8.9	10.0	
34	18.4	16.9	13.7	11.3	11.2	12.5	
36	24.0	22.0	17.7	14.4	13.9	15.5	
38	30.9	28.3	22.6	18.1	17.2	19.0	
40	39.3	35.9	28.5	22.5	21.1	23.0	
42	49.3	45.0	35.6	27.8	25.6	27.7	
44	61.3	55.9	44.0	34.0	31.0	33.1	
46	75.5	68.8	54.0	41.4	37.2	39.3	
48	92.2	83.9	65.7	50.1	44.5	46.5	
50	112.	102.	79.	60.	53.	55.	

Table D.5. Axle load equivalency factors for flexible pavements, tandem axles and p_tof 2.5.

Axle Load		Pavement Structural Number (SN)						
(kips)	1	2	3	4	5	6		
2	.0001	.0001	.0001	.0000				
4	.0005	.0005			.0000	.0000		
6	.002	.002	.002	.0003	.0003	.0002		
8	.004	.006	.002	.001	.001	.001		
10	.008	.013	.005	.004	.003	.003		
12	.015	.024		.009	.007	.006		
14	.026	.041	.023	.018	.014	.013		
16	.044	.065	.042	.033	.027	.024		
18	.070	.005	.070	.057	.047	.043		
20	.107		.109	.092	.077	.070		
22	.160	.141	.162	.141	.121	.110		
24	.231	.198	.229	.207	.180	.166		
26		.273	.315	.292	.260	.242		
28	.327	.370	.420	.401	.364	.342		
30	.451	.493	.548	.534	.495	.470		
32	.611	.648	.703	.695	.658	.633		
34	.813	.843	.889	.887	.857	.834		
	1.06	1.08	1.11	1.11	1.09	1.08		
36	1.38	1.38	1.38	1.38	1.38	1.38		
38	1.75	1.73	1.69	1.68	1.70	1.73		
40	2.21	2.16	2.06	2.03	2.08	2.14		
42	2.76	2.67	2.49	2.43	2.51	2.61		
44	3.41	3.27	2.99	2.88	3.00	3.16		
46	4.18	3.98	3.58	3.40	3.55	3.79		
48	5.08	4.80	4.25	3.98	4.17	4.49		
50	6.12	5.76	5.03	4.64	4.86	5.28		
52	7.33	6.87	5.93	5.38	5.63	6.17		
54	8.72	8.14	6.95	6.22	6.47	7.15		
56	10.3	9.6	8.1	7.2	7.4	8.2		
58	12.1	11.3	9.4	8.2	8.4			
60	14.2	13.1	10.9	9.4	9.6	9.4		
62	16.5	15.3	12.6	10.7	10.8	10.7		
64	19.1	17.6	14.5	12.2	12.2	12.1		
66	22.1	20.3	16.6	13.8	13.7	13.7		
68	25.3	23.3	18.9	15.6	15.4	15.4		
70	29.0	26.6	21.5	17.6	17.2	17.2		
72	33.0	30.3	24.4	19.8	19.2	19.2		
74	37.5	34.4	27.6	22.2	21.2	21.3		
76	42.5	38.9	31.1	24.8	21.3	23.6		
78	48.0	43.9	35.0	27.8	23.7	26.1		
80	54.0	49.4	39.2	30.9	26.2	28.8		
82	60.6	55.4	43.9	34.4	29.0	31.7		
84	67.8	61.9	49.0	34.4	32.0	34.8		
86	75.7	69.1	54.5	38.2	35.3	38.1		
88	84.3	76.9	60.6	42.3	38.8	41.7		
90	93.7	85.4		46.8	42.6	45.6		
		00.4	67.1	51.7	46.8	49.7		

Table D.6. Axle load equivalency factors for flexible pavements, triple axles and p_t of 2.5.

Axle	Pavement Structural Number (SN)							
Load . (kips)	1	2	3	4	5	6		
2	.0000	.0000	.0000	.0000	.0000	.0000		
4	.0002	.0002	.0002	.0001	.0001	.0001		
6	.0006	.0007	.0005	.0004	.0003	.0003		
8	.001	.002	.001	.001	.001	.001		
10	.003	.004	.003	.002	.002	.002		
12	.005	.007	.006	.004	.003	.003		
14	.008	.012	.010	.008	.006	.006		
16	.012	.019	.018	.013	.011	.010		
18	.018	.029	.028	.021	.017	.016		
20	.027	.042	.042	.032	.027	.024		
22	.038	.058	.060	.048	.040	.036		
24	.053	.078	.084	.068	.057	.051		
26	.072	.103	.114	.095	.080	.072		
28	.098	.133	.151	.128	.109	.099		
30	.129	.169	.195	.170	.145	.133		
32	.169	.213	.247	.220	.191	.175		
34	.219	.266	.308	.281	.246	.228		
	.279	.329	.379	.352	.313	.292		
36	.352	.403	.461	.436	.393	.368		
38	.439	.491	.554	.533	.487	.459		
40		.594	.661	.644	.597	.567		
42	.543		.781	.769	.723	.692		
44	.666	.714	.918	.911	.868	.838		
46	.811	.854		1.069	1.033	1.005		
48	.979	1.015	1.072	1.25	1.22	1.20		
50	1.17	1.20	1.24	1.44	1.43	1.41		
52	1.40	1.41	1.44		1.66	1.66		
54	1.66	1.66	1.66	1.66		1.93		
56	1.95	1.93	1.90	1.90	1.91	2.24		
58	2.29	2.25	2.17	2.16	2.20			
60	2.67	2.60	2.48	2.44	2.51	2.58		
62	3.09	3.00	2.82	2.76	2.85	2.95		
64	3.57	3.44	3.19	3.10	3.22	3.36		
66	4.11	3.94	3.61	3.47	3.62	3.81		
68	4.71	4.49	4.06	3.88	4.05	4.30		
70	5.38	5.11	4.57	4.32	4.52	4.84		
72	6.12	5.79	5.13	4.80	5.03	5.41		
74	6.93	6.54	5.74	5.32	5.57	6.04		
76	7.84	7.37	6.41	5.88	6.15	6.71		
78	8.83	8.28	7.14	6.49	6.78	7.43		
80	9.92	9.28	7.95	7.15	7.45	8.21		
82	11.1	10.4	8.8	7.9	8.2	9.0		
84	12.4	11.6	9.8	8.6	8.9	9.9		
86	13.8	12.9	10.8	9.5	9.8	10.9		
88	15.4	14.3	11.9	10.4	10.6	11.9		
90	17.1	15.8	13.2	11.3	11.6	12.9		

Table D.7. Axle load equivalency factors for flexible pavements, single axles and p_tof 3.0.

Axle Load	Pavement Structural Number (SN)							
(kips)	1	2	3	4	5	6		
2	.0008	.0009	.0006	.0003	0000	0000		
4	.004	.008	.006	.004	.0002	.0002		
6	.014	.030	.028	.018		.002		
8	.035	.070	.080	.055	.012	.010		
10	.082	.132	.168	.132	.040	.034		
12	.173	.231	.296	.260	.101	.086		
14	.332	.388	.468	.447	.212	.187		
16	.594	.633	.695	.693	.391	.358		
18	1.00	1.00	1.00	1.00	.651	.622		
20	1.60	1.53	1.41	1.38	1.00	1.00		
22	2.47	2.29	1.96	1.83	1.44	1.51		
24	3.67	3.33	2.69	2.39	1.97	2.16		
26	5.29	4.72	3.65	3.08	2.60	2.96		
28	7.43	6.56	4.88	3.93	3.33	3.91		
30	10.2	8.9	6.5	5.0	4.17	5.00		
32	13.8	12.0	8.4	6.2	5.1	6.3		
34	18.2	15.7	10.9	7.8	6.3	7.7		
36	23.8	20.4	14.0	9.7	7.6	9.3		
38	30.6	26.2	17.7	11.9	9.1	11.0		
40	38.8	33.2	22.2	14.6	11.0	13.0		
42	48.8	41.6	27.6	17.8	13.1	15.3		
44	60.6	51.6	34.0	21.6	15.5	17.8		
46	74.7	63.4	41.5	26.1	18.4	20.6		
48	91.2	77.3	50.3	31.3	21.6	23.8		
50	110.	94.	61.	37.	25.4 30.	27.4 32.		

Table D.8. Axle load equivalency factors for flexible pavements, tandem axles and \mathbf{p}_{t} of 3.0.

Axle	Pavement Structural Number (SN)							
Load (kips)	1	2	3	4	5	6		
2	.0002	.0002	.0001	.0001	.0000	.0000		
4	.001	.001	.001	.000	.000	.000		
6	.003	.004	.003	.002	.001	.001		
8	.006	.011	.009	.005	.003	.003		
10	.011	.024	.020	.012	.008	.007		
12	.019	.042	.039	.024	.017	.014		
14	.031	.066	.068	.045	.032	.026		
16	.049	.096	.109	.076	.055	.046		
18	.075	.134	.164	.121	.090	.076		
20	.113	.181	.232	.182	.139	.119		
22	.166	.241	.313	.260	.205	.178		
24	.238	317	.407	.358	.292	.257		
26	.333	.413	.517	.476	.402	.360		
28	.457	.534	.643	.614	.538	.492		
30	.616	.684	.788	.773	.702	.656		
32	.817	.870	.956	.953	.896	.855		
34	1.07	1.10	1.15	1.15	1.12	1.09		
36	1.38	1.38	1.38	1.38	1.38	1.38		
38	1.75	1.71	1.64	1.62	1.66	1.70		
40	2.21	2.11	1.94	1.89	1.98	2.08		
42	2.75	2.59	2.29	2.19	2.33	2.50		
44	3.39	3.15	2.70	2.52	2.71	2.97		
46	4.15	3.81	3.16	2.89	3.13	3.50		
48	5.04	4.58	3.70	3.29	3.57	4.07		
50	6.08	5.47	4.31	3.74	4.05	4.70		
52	7.27	6.49	5.01	4.24	4.57	5.37		
54	8.65	7.67	5.81	4.79	5.13	6.10		
56	10.2	9.0	6.7	5.4	5.7	6.9		
58	12.0	10.6	7.7	6.1	6.4	7.7		
60	14.1	12.3	8.9	6.8	7.1	8.6		
62	16.3	14.2	10.2	7.7	7.8	9.5		
64	18.9	16.4	11.6	8.6	8.6	10.5		
66	21.8	18.9	13.2	9.6	9.5	11.6		
68	25.1	21.7	15.0	10.7	10.5	12.7		
70	28.7	24.7	17.0	12.0	11.5	13.9		
72	32.7	28.1	19.2	13.3	12.6	15.2		
74	37.2	31.9	21.6	14.8	13.8	16.5		
76	42.1	36.0	24.3	16.4	15.1	17.9		
78	47.5	40.6	27.3	18.2	16.5	19.4		
80	53.4	45.7	30.5	20.1	18.0	21.0		
82	60.0	51.2	34.0	22.2	19.6	22.7		
84	67.1	57.2	37.9	24.6	21.3	24.5		
86	74.9	63.8	42.1	27.1	23.2	26.4		
88	83.4	71.0	46.7	29.8	25.2	28.4		
90	92.7	78.8	51.7	32.7	27.4	30.5		

Table D.9. Axle load equivalency factors for flexible pavements, tandem axles and $\mathbf{p_t}$ of 3.0.

Axle Load	Pavement Structural Number (SN)							
(kips)	1	2	3	4	5	6		
2	.0001	.0001	.0001	.0000	0000	0000		
4	.0005	.0004	.0003	.0002	.0000	.0000		
6	.001	.001	.001	.001	.0001	.0001		
8	.003	.004	.002	.001	.000	.000		
10	.005	.008	.005	.003	.001	.001		
12	.007	.014	.010		.002	.002		
14	.011	.023	.018	.006	.004	.003		
16	.016	.035	.030	.011	.007	.006		
18	.022	.050	.030	.018	.013	.010		
20	.031	.069	.047	.029	.020	.017		
22	.043		.069	.044	.031	.026		
24	.059	.090	.097	.065	.046	.039		
26	.079	.116	.132	.092	.066	.056		
28		.145	.174	.126	.092	.078		
30	.104	.179	.223	.168	.126	.107		
32	.136	.218	.279	.219	.167	.143		
34	.176	.265	.342	.279	.218	.188		
	.226	.319	.413	.350	.279	.243		
36	.286	.382	.491	.432	.352	.310		
38	.359	.456	.577	.524	.437	.389		
40	.447	.543	.671	.626	.536	.483		
42	.550	.643	.775	.740	.649	.593		
44	.673	.760	.889	.865	.777	.720		
46	.817	.894	1.014	1.001	.920	.865		
48	.984	1.048	1.152	1.148	1.080	1.030		
50	1.18	1.23	1.30	1.31	1.26	1.22		
52	1.40	1.43	1.47	1.48	1.45	1.43		
54	1.66	1.66	1.66	1.66	1.66	1.66		
56	1.95	1.92	1.86	1.85	1.88	1.00		
58	2.28	2.21	2.09	2.06	2.13	1.91		
60	2.66	2.54	2.34	2.28	2.13	2.20		
62	3.08	2.92	2.61	2.52	2.39	2.50		
64	3.56	3.33	2.92	2.77	2.66	2.84		
66	4.09	3.79	3.25		2.96	3.19		
68	4.68	4.31	3.62	3.04	3.27	3.58		
70	5.34	4.88	4.02	3.33	3.60	4.00		
72	6.08	5.51	4.46	3.64	3.94	4.44		
74	6.89	6.21		3.97	4.31	4.91		
76	7.78		4.94	4.32	4.69	5.40		
78	8.76	6.98	5.47	4.70	5.09	5.93		
80	9.84	7.83	6.04	5.11	5.51	6.48		
82	11.0	8.75	6.67	5.54	5.96	7.06		
84	11.0	9.8	7.4	6.0	6.4	7.7		
86	12.3	10.9	8.1	6.5	6.9	8.3		
	13.7	12.1	8.9	7.0	7.4	9.0		
88	15.3	13.4	9.8	7.6	8.0	9.6		
90	16.9	14.8	10.7	8.2	8.5	10.4		