

CE 441 Design of Pavement

Professor Hamad I. Al-Abdul Wahhab

Phone 3828 Office: 16-111 Office hrs: SMW 8:00 – 9:00 AM SMW 10:00 – 11:00 AM

King Fahd University of Petroleum & Minerals CIVIL ENGINEERING DEPARTMENT

CE 441 Design of Pavement

Prof. Hamad I. Al-Abdul Wahhab

Bldg. 16-Room 111: Phone 3828

OBJECTIVE

This course is mainly designed for senior students with some background in Highway engineering, computer programming and fundamentals of *elasticity*. Students will be introduced to the basic aspects of pavement structure design for flexible asphalt pavements and rigid pavements for highways and airports.

TEXTBOOK: Principle of Pavement Design by E. Yoder and M. Witczack, McGraw-Hill Book Co., 1975.

REFERENCES

- 1. Thickness Design, The Asphalt Institute (MS-I), 1981.
- 2. AASHTO Interim Guide for Design of Pavement Structures, 1972.
- 3. Structural Design of Asphalt Concrete Pavement System, HRB Special Report No. 126, 1971.
- 4. Layered Pavement Systems, TRR No. 810, TRB, 1981.
- 5. Highway Design and Construction, R.J. Salter.
- 6. Saudi Arabian General Specifications.
- 7. Shell Design Manual.
- 8. Soils Manual, The Asphalt Institute (MS-10).
- 9. Full-Depth Asphalt Pavements for Air Carrier Airports, The Asphalt Institute (MS-11).

COURSE OUTLINE

Week "Approx."	<u>Chapter</u>	<u>Topic</u>
1	1	Introduction
2	1	Principles of pavement design
3,4	2	Stresses in flexible pavements
5	3	Stresses in rigid pavements
6	4	Traffic loads and its characteristics
	EXAM # 1 (in class)	
7	7	Soil classification systems
8	8	Material characterization
9,10	8	Pavement materials
11	15	Design of flexible highway pavements
12	14	Design of flexible highway pavements
	EXAM # 2 (in class)	
13	17	Design of flexible airport pavements
14	16	Design of rigid highway pavements
15	20	Design of rigid airport pavements
16		FINALS

WISH YOU VERY GOOD LUCK.

COURSE FORMAT

1. Lectures:

Students are required to attend unless a permissible excuse is granted. However, students are responsible to information taught in class and in reading assignments as well.

2. <u>Homeworks:</u>

Homeworks are assigned during the semester at an interval of one week. Each homework will cover one integrated part of the course. Grading of homework should measure student's understanding to the subject, organization and preparation of the homework report, and ability to discuss and deduce conclusions.

3. Exams:

In general, two (one-hour) exams will be given in addition to the Final. The final will carry 40% of the total grade while each one-hour exam will carry 20% and 25%, respectively.

4. Grading:

A.	Attendance and participation in class	5%
B.	Homeworks	10%
C.	2 Midterm Exams	
	- First Midterm.	25%
	- Second Midterm	25%
D.	Final Exam	35%

INTRODUCTION TO PAVEMENT STRUCTURES

Why do we need pavements? Discussion

Functions of a Pavement

- 1. Load Bearing Capacity: Distribute load from tires to Subgrade
- 2. Seal Roadbed from Moisture, Prevent Dust/Loss of Soil
- 3. Smooth Surface for Comfortable Ride
- 4. Safe Ride "Friction with Tire," Skid Resistance

A pavement is a structure composed of structural elements, whose function is to protect the natural subgrade and to carry the traffic safely and economically.

Rigid Pavement

A pavement structure of which the surface course is made of Portland cement concrete

Rigid pavement tend (work as slab) to distribute the load over a relatively wide area of soil. Why?

(High modulus of elasticity)

Flexible Pavement

A pavement structure of which the surface course is made of asphaltic concrete, that maintains intimate contact with and distributes loads to the subbase or subgrade and depends upon aggregate interlock, particle friction, and cohesion for stability

Def.

Flexible pavement is one which can adjust its position to the shape of the underlying layers without sustaining significant damage.

The essential difference between Flexible pavement and Rigid pavement is the manner in which they distribute the load

Pavement SectionA layeredsystem designed todistributeconcentratedtrafficloads to the subgrade.

Structural Model

<u>Key</u> .		
	1:	A.C. surface course
	າ.	haco

- base
- base
 sub base
 compacted road
 subgrade
 roadbed

In Flex. Pavement As a wheel passes:

elastic deformations occur plastic deformations occur elastic deformations may lead to fatigue cracking plastic deformation deformations may lead to excessive rutting.

Pavement Types

*Intermediate

*Low

- Un-surfaced - Dust oil - Penetration macadam - Surface treatment

dense cold mix
Cold mix
Open cold mix
Lime treated base
Soil cement

<u>*High Type</u>

Asphalt concrete surfacedPortland cement concrete

High Pavement Types

- Flexible (Asphalt Pavements)
- Conventional
- Full-depth
- Rigid (Concrete Pavements)
- Composite

•Flexible pavements: Bituminous (asphalt) and granular layers. First road in NJ in 1870.

•Rigid pavements: Portland Cement Concrete and usually drainage layers. First road in Detroit-Michigan in 1908.

Flexible Pavements

1. Conventional Asphalt Pavement

Layered systems with better materials at top and lower quality materials at bottom. High stress intensity is at the top and it decreases with depth.

1-2"	1. Surface Coarse	(wearing coarse), HMA: strong, smooth, skid resident and waterproof.			
tack coat					
2-4"	2. Binder Coarse	(Asphalt base coarse), HMA: larger agg., less AC, lower Q			
Prime coat					
4-12"	3. Base	granular, untreated or stabilized, open graded			
4-12"	4. Subbase	lower quality, more fines, usually local agg.			
6"	5. Compacted Subgrade/Stabilized	usually compacted approximately 6", sometimes it is a borrowed material			
	6. Subgrade				

Allow use of local materials and therefore less expensive layers.

Full Depth Asphalt Pavement 2.

2-4"	2.1 Surface Coarse	HMA		
tack coat				
2-20"	2.2 Base Coarse	HMA		
Prime coat				
	2.3 Prepared Subgrade	(compacted)		
	2.4 Subgrade	(natural)		

- Less construction time.
- Uniformity of pavement structure. More effective waterproof for subgrade.

Discussion: 1. Why binder course ? a. b. 2. Why subbase and base ? a. b. 3. Why in flexible pavements better materials are placed on top? A) Flexible pavement

B) Rigid Pavement

Rigid Pavements

Concrete slab

Subbase 🕴

Subgrade

With or without steel, dowels and tie bars.

(2) Can adjust its position to the shape of the underlying layers without damage.

Flexible pavements

Asphalt Concrete (AC)

Granular or stabilized base

Subbase Subgrade

80% + of pavements worldwide Full depth = AC on subgrade Deep strength = AC on subbase

- (3) Based on layered system concept (Ch. 2).
- (4) Asphalt cement + Mineral agg.

One which will bridge minor undulations in underlying layers without failing.

Westergard theory or slab on elastic foundation.

Portland cement + Mineral agg. (+ steel)

(5) Failure types bleeding polishing deformation fatigue polishing scaling joint need filling fatigue pumping Wheel load:

TRUCK AXLE DISTRIBUTION

Wheel can be single or dual
Axle can be single, Tandem or Triple
Legal axle load is (18 kip, 8 Ton) on
Dual Axle. for more load add more axles
For tandem-axles, the maximum allowable is 32 kip with spacing of 40"-48".

If tire is inflated correctly, then the contact pressure between pavement and tire is equal to the tire pressure.

If tire has low pressure, then edgepressure is higher than center.

If tire has high pressure, then centerpressure is higher than edge pressure.

For correct inflation, and assuming a uniform contact pressure, the tire imprint may be assumed circular. The radius of contact is

Contact Pressure = Tire pressure = p

* Circular imprint:

$$a = \sqrt{\frac{P}{p\pi}}$$

 $\begin{array}{ll} P = 4500 \ lb \\ p = 80 \ psi \end{array}, \ a = ????? \\ \end{array}$

where: a = radius of contact P = total load p = tire pressure

* Rectangle and

semi-circle

$$\ell = \sqrt{\frac{A}{0.5227}} \quad , \quad A =$$

$$A = \frac{P}{p}$$

Airport:

00 00 00 00

0 Single		00 dual	Nose wheels
0	0	(1) single gear	Main gear
00	00	(2) dual gear	
00 00	00 00	(3) twin-tandem ge	ar
00 00		(4) Double twin-tan	dem gear
00 00			

Importance Of Stresses in pavement?

1- to understand the mechanism of load distribution

2- to use in improved design methods

3- to evaluate the performance of materials.

Types of analysis:

A. Flexible Pavements:

- Layered elastic theory .1
- Finite element analysis .2
 - Visco elastic analysis .3

B. Rigid Pavements:

Slab on elastic foundation (Westergard) .1 Others (finite element). .2

Multi-layer theory – Outline2 or more layersA) Structure1 or more circular U.D.B) Loadsloads

E, µ for each layer.

C) Materials

Differences – Highway and Airfield Pavements

	<u>Highway</u>	<u>Airfield</u>
1- Size of loads	80,000 lb (40 ton)	750,000 lb
2- Tire pressure	100 psi	250 psi
3- Gear configuration	S, D, T	Varies S,D,T and twin T
4- Load applications	Millions	L 50,000
5- Wander	Ignored (wheel load is 3- 4 ft from edge)	Not ignored (75% of loads within 7.5')
6- Geometry	Ribbon	Strip of limited length and 500' wide
7- Pavement vehicle interaction	Roughness acceptable	Not acceptable
8- Type of structure	Thin	Thick Runway end is thicker than Runway (.95 T)

(see Fig 2.12 & Fig 2.13)

- * What is the effect of Tire Load ?
- * What is the effect of Tire Pressure.?

Serviceability:

Present Serviceability Index (PSI) was developed during the AASHTO road test. It is based on rating scale to designate the condition of the pavement at a certain time.

- very poor pavement 0 -
- excellent pavement 5 -

PSI is based on satisfaction, comfort, roughness, skid resistance etc. The index can be correlated with objective with objective measurements done on the surface of the pavement such as Roughness cracking, and Rut depth in the case of flexible pavement.

A Highway pavement is usually designed for a terminal PSI (TSI) of 2.5

flexible

$$PSI = 5.03 - 1.9 \log (1 + S_V) - 0.01 \sqrt{c + p} - 1.38 R_D$$

Types of distress:

Distress are caused by:

Traffic loading (overloading, tire (1) pressure, and repetitions) (Rut, fat crack)

Environmental conditions, Temp., (2) Rainfall ... (volume change due to wetting and drying) Materials. (3)

Distress types:

a) Functional: where pavement will not carry out its intended function without causing discomfort.

Flex

Ex. **Rigid**

- bleeding
- polishing
- polishing
- joint need filling
 - raveling
- scaling
- deformation

b) Structural: a breakdown of one or more of the pavement components. Pavement will be incapable of sustaining the loads.

- fatigue
- fatigue cracks

Ex.

- pumping
- overload
- temp effect

- deformation
- expansive soils
- drainage problems
- poor construction
- frost
 - etc.

Principles of design: (1) Must provide for loading environment such that the pavement

(2) Some failure is acceptable ifthe pavement continues to function& if the cost of repair is not too high.

(3) Routine maintenance is an integral part of the highway system, and is becoming increasingly important as the need to keep the existing network in good order exceeds that for new construction.

The most extreme rehabilitation measure is the application of an overlay this may be time as follows:

Design Methods:-

Types:

- based on strength tests
- empirical approaches
- analytical (Mechanistic Approach
 - combination
- Factors influencing design:
 - (1) Paving mixtures
 - (2) Structural design needs:
 - traffic
 - environment
 - materials
 - construction methods
 - maintenance methods
 - construction costs

Design process:

The basic elements associated with pavement design are:

Chapter 2 STRESSES IN FLEXIBLE PAVEMENT

Pavement Design History

•What is pavement design? Pavement section profile (Thickness of layers), Materials used in layers, design life, drainage, shoulders, joints, reinforcement,

•Prior to the 1920s, thickness was based purely on experience regardless of the soils encountered.

•It gradually evolved from art to science. However, empiricism still plays an important role.

Pavement Design Methods Flexible

1.Empirical – No shear test: Based on subgrade soil classification. Group Index Method. Not used widely.

2.Empirical- with shear test: Based on CBR (California Bearing Ratio) values. Very popular after the World War II.

3.Limiting Shear Failure Methods: Determine thickness required preventing shear failure of granular materials and subgrade soils. Ignores ride comfort.

4.Limiting Deflection Methods: Determine thickness to limit deflection of subgrade. Boussinesq's equation, Burmister 2layer method, Computerized methods. Ignores stresses and strain in individual layers.

5.Regression methods: Based on analysis of road test performance. (AASHo –AASHTO road test). Design equations are useful only for conditions included in the test. New materials, new combinations cannot be reliably designed.

6.Mechanistic – Empirical Methods: Mechanics of materials are used to relate wheel load to pavement response (stress/strain/deflection). Relation between response and performance is based on correlation to field performance.

Rigid

1.Analytical: Simple closed form formulas to estimate stresses and strains in slabs. Goldbeck solution, Westergaard's liquid foundation, Pickett's old foundtaion. Assume full conatct between slab and soil.

2.Numerical solutions: Discrete elements, finite element. WESLIQID, WESLAYER, ILLI-Slab, JSLAB, RISC.

Recent Developments:

•Computer programs: Multi-layer Elastic theory --CHEV, DAMA, BISAR, ELSYM5, PDMAP. Finite Element – SAPIV, ILLI-PAVE, MICH-PAVE (nonlinear).

•Serviceability and Reliability: Index for

serviceability, probabilistic computer programs.

•Dynamic Loading: No inertia effects. Dynamics of vehicle.

•Fatigue of Concrete: PCA method, stress ratio of 0.45.

•Control of Pumping in Concrete pavements.

CLASSICAL DESIGN APPROACH: Relies on empirical characteristics and observations

Disadvantages of empirical design models Difficult to extrapolate to other conditions than those that were used to generate the performance models

> Advantage of the mechanistic approach Predict future performance of new materials and new type of loading

EVOLUTION <u>EMPIRICAL</u> > <u>MECHANISTIC</u>

MECHANISTIC APPROACH

REQUIRES TO CHARACTERIZE THE FUNDAMENTAL PROPERTIES OF MATERIALS

WITH LAB OR SITE TESTS THAT SIMULATE FUTURE LOADING CONDITIONS

<u>MATERIALS = MIXTURE OF RHEOLOGICAL BEHAVIOUR</u> <u>ELASTIC, PLASTIC, VISCOUS</u>

As a wheel passes:

- elastic deformations occur
- plastic deformations occur
- •elastic deformations may lead to fatigue
- plastic deformation deformations may lead to excessive rutting.

BURMISTER MODEL BASED ON SIX (6) ASSUMPTIONS

- 1. Homogeneous layers
- 2. Isotropic layers
- 3. Friction between layers
- 4. Infinite radially
- 5. No surface shear
- 6. μ&Ε

GENERAL CONCEPT OF MULTI -LAYER STRUCTURAL SYSTEM

STRESSES ON EACH LAYER

3 NORMAL STRESSES : $\sigma_z \sigma_r \sigma_t$

6 SHEAR STRESSES : $\tau_{rt} \tau_{tr} \tau_{rz} \tau_{zr} \tau_{tz} \tau_{zt}$

DEFORMATION EQUATIONS:

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \mu (\sigma_{r} + \sigma_{t}) \right]$$
$$\varepsilon_{r} = \frac{1}{E} \left[\sigma_{r} - \mu (\sigma_{t} + \sigma_{z}) \right]$$
$$\varepsilon_{t} = \frac{1}{E} \left[\sigma_{t} - \mu (\sigma_{r} + \sigma_{z}) \right]$$

If μ = 0.5 then $\sigma_r = \sigma_z$

Parameter	General Case	Special Case ($\mu = 0.5$)
Vertical stress	$\sigma_z = p[A + B]$	(same)
Radial horizontal stress	$\sigma_r = p[2\mu A + C + (1 - 2\mu)F]$	$\sigma_r = p[A + C]$
Tangential horizontal stress	$\sigma_t = p[2\mu A - D + (1 - 2\mu)E]$	$\sigma_t = p[A - D]$
Vertical radial shear stress	$\tau_{rz} = \tau_{zr} = pG$	(same)
Vertical strain	$\epsilon_{z} = \frac{p(1+\mu)}{E_{1}} \left[(1-2\mu)A + B \right]$	$\epsilon_z = \frac{1.5p}{E_1} B$
Radial horizontal strain	$\epsilon_r = \frac{p(1+\mu)}{E_1} \left[(1-2\mu)F + C \right]$	$\epsilon_r = \frac{1.5p}{E_1} C$
Tangential horizontal strain	$\epsilon_t = \frac{p(1 + \mu)}{E_1} \left[(1 - 2\mu)E - D) \right]$	$\epsilon_t = - \frac{1.5p}{E_1} D$
Vertical deflection	$\Delta_z = \frac{p(1+\mu)a}{E_1} \left[\frac{z}{a}A + (1-\mu)H \right]$	$\Delta_z = \frac{1.5pa}{E_1} \left(\frac{z}{a} A + \frac{H}{2} \right)$
Bulk stress	$\theta = \sigma_z + \sigma_r + \sigma_t$	
Bulk strain	$\epsilon_{\theta} = \epsilon_{z} + \epsilon_{r} + \epsilon_{t}$	
Vertical tangential shear stress	$ au_{zt} = au_{tz} = 0$ \therefore $[\sigma_t(\epsilon_t) ext{ is principal s}]$	tress (strain)]
Principal stresses	$\sigma_{1,2,3} = \frac{(\sigma_z + \sigma_r) \pm \sqrt{(\sigma_z - \sigma_r)^2}}{2}$	$-(2\tau_{rs})^2$
Maximum shear stress	$\tau_{\max} = \frac{\sigma_1 - \sigma_3}{2}$	

^a See Table 2.2 for values of the functions A, B, C, D, E, F, G, and H. (+) values compressive
TABLE 2.2. One-Layer Elastic Function Values (after Ahlvin and Ulery)

Function A																	
Depth (z)	Offset (r) in Radii																
Radii	0	0.2	0.4	0.6	8.0	1	1.2	1.5	2	3	4	5	6	8	10	12	14
~	10	1.0	1.0	1.0	1.0	5	0	0	0 0		0	0	0	0.	0	0	0
0	00050	90748	88670	86126	78797	43015	.09645	.02787	.00856	,00211	.00084	.00042					
0.1	90000	70824	77884	73483	63014	38269	.15433	.05251	.01680	.00419	.00167	.00083	,00048	.00020			
0.2	21965	70518	68316	62690	52081	.34375	.17964	.07199	.02440	.00622	.00250						
0.5	69861	62015	59241	53767	.44329	.31048	.18709	.08593	.03118								0000
0.5	55279	54403	.51622	.46448	.38390	.28156	.18556	.09499	.03701	.01013	,00407	.00209	,00118	.00053	,00025	.00014	,0000
0.5	48550	47691	45078	40427	.33676	.25588	.17952	,10010									
0.7	42654	41874	39491	.35428	.29833	.21727	.17124	.10228	,04558								
0.8	37531	36832	.34729	.31243	.26581	,21297	.16206	.10236									
0.9	33104	.32492	.30669	.27707	.23832	.19488	,15253	,10094				1.000.0000	-			00000	0001
1	.29289	,28763	.27005	.24697	.21468	.17868	.14329	,09849	.05185	.01742	,00761	,00393	.00226	,00097	,000.00	.00029	.0001
1.2	23178	.22795	.21662	,19890	,17626	.15101	,12570	.09192	.05260	,01935	.00871	,00459	,00269	.00115	00073	00043	0002
1.5	.16795	.16552	.15877	.14804	.13436	.11892	.10296	.08048	,05116	.02142	.01013	,00548	,00325	,00141	.00073	00056	0003
2	.10557	.10453	.10140	,09647	.09011	.08269	.07471	.06275	,04496	.02221	.01160	.00659	,00399	,00100	,00034	00068	0004
2.5	.07152	.07098	.06947	,06698	.06373	.05974	,05555	,04880	.03787	.02143	.01221	,00732	,00403	.00214	00132	00079	.0005
3	.05132	.05101	.05022	.04886	.04707	.04487	.04241	,03839	,03150	,01980	.01220	00770	,00596	,00242	00160	00099	.0006
4	,02986	,02976	,02907	.02832	,02802	.02749	.02651	,02490	,02193	.01592	.01109	.00766	00507	00202	00179	00113	.0007
5	.01942	.01938				,01835			.01573	,01249	,00949	00708	,00327	00290	00188	00124	0008
6	.01361					.01307			,01168	.00983	.00793	,00020	00445	00291	00193	.00130	.0009
7	.01005					,00976			.00894	.00784	,00661	.00348	00940	00276	00189	00134	.0009
8	.00772					,00755			,00703	.00635	00009	00400	00359	00256	00184	.00133	.0009
9	.00612					,00600			,00566	.00520	00900	00352	00335	00241	100000		
10								,00477	,00465	,00430	5 .00394	100/304					_

Function B

Depth (z) in Radii	Offset (r) in Radii																
	0	0.2	0.4	0.6	0.8	1	1.2	1.5	2	3	4	5	6	8	10	12	14
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$^{0.1}_{0.2}$.09852 .18857	.10140 .19306	.11138 .20772	,13424 .23524 .99483	.18796 .25983 .27257	.05388 .08513 .10757	07899 07759 04316	02672 04448 04999	01593 02166	-,00210 -,00412 -,00599	-,00166	-,00083	00024	-,00010			
0.3 0.4 0.5	,32016 ,35777	.32259	.32748	.32273 .33106	.26925 .26236	.12404	-,00766	04535 03455 02101	02522 02651	-,00991	00388	-,00199	-,00116	00049	-,00025	-,00014	-,00
0.6	.37831 .38487 38091	.37531 .37962 37408	.36308 .36072 .35133	,32822 ,31929 ,30699	,25411 ,24638 .23779	,14440 ,14986 ,15292	,06209	-,00702	-,02329								
0.9	.36962	.36275 .34553	.33734 .32075	.29299 .27819	.22891 .21978	.15404	,08507	.01795 .02814 04978	-,01005	01115	-,00608	-,00344	-,00210	00092 00107	-,00048	00028	-,00
1.2	.31485 .25602	,30730 .25025 18144	.28481 .23338 .16644	.24836 .20694 .15198	.17368	.13732	,10193	,05745	.01385 .02836	00669	00600 00410	00401	00265	-,00126	-,00068	00040 00050 00059	-,00
2.5 3	.12807	.12633	.12126	.11327 .08635	,10298 .08033	.09130 .07325	,07869 ,06551	.06022 .05354	.03429 .03511 .03066	,00661 ,01112 .01515	00130 .00157 .00595	00271 00134 .00155	-,00230 -,00192 -,00029	00150	-,00099	-,00065	00 00
4	.05707	.05666	5 ,05562)	,05383	.05145	.03384 .02468	,04552	03333	,02474 ,01968	.01522	.00810 .00867	,00371 ,00496	.00132	-,00043	-,00070	-,00068	-,00 -,00
7 8	,01980					.01868			.01577 .01279 .01054	,01204 ,01034 ,00895	.00842	.00547 .00554 .00533	.00332 .00372 .00386	,00093	,00035	00008	00
9 10	.01215	t:				,01170		.00924	,00879	.00764	.00631	,00501	.00382	,00199			

where p = unit load on circular plate

a = radius of plate

- $E_2 =$ modulus of elasticity of *lower* layer
- F_2 = dimensionless factor depending on the ratio of moduli of elasticity of the subgrade and pavement as well as the depth to radius ratio

Curves of F_2 for various depth ratio and moduli of elasticity are shown in Figure 2.7.

Interface Deflection

Three layer theory

$$\sigma_{Z1} = p(ZZ1)$$
$$\sigma_{Z2} = p(ZZ2)$$

use with Figure 2.10

Function of

$$k_1 \text{ or } K1 = \frac{E_1}{E_2}$$
 $k_2 \text{ or } K2 = \frac{E_2}{E_3}$
 $a_1 \text{ or } A = \frac{a}{h_2}$ $H = \frac{h_1}{h_2}$

$$\sigma_{z1} - \sigma_{r1} = p[ZZ1 - RR1]$$

$$\sigma_{z2} - \sigma_{r2} = p[ZZ2 - RR2]$$

 $\sigma_{z2} - \sigma_{r3} = p[ZZ2 - RR3]$

use with Table 2.3

$$\varepsilon_{z} = \frac{1}{E} \left[\sigma_{z} - \mu (\sigma_{r} + \sigma_{t}) \right]$$
$$\varepsilon_{r} = \frac{1}{E} \left[\sigma_{r} - \mu (\sigma_{t} + \sigma_{z}) \right]$$
$$\varepsilon_{t} = \frac{1}{E} \left[\sigma_{t} - \mu (\sigma_{r} + \sigma_{z}) \right]$$

		$\mathcal{H} = 0.125$			H = 0.125			H = 0.125	H = 0.125 $k_1 = 200.0$				
41		$k_1 = 0.2$			$k_1 = 2.0$			$k_1 = 20.0$					
	(ZZ1-RR1)	(ZZ2-RR2)	(ZZ2-RR3)	$(ZZ1-\bar{R}R1)$	(ZZ2-RR2)	(ZZ2-RR3)	(ZZ1-RR1)	(ZZ2-RR2)	(ZZ2-RR3)	(ZZ1-RR1)	(ZZ2-RR2)	(ZZ2)	
			$k_1 = 0.2$			$k_3 = 0.2$			$k_3 = 0.2$			42 -	
0.1	0.12438	0.00332	0.01659	0.71614	0.00350	0.01750	1.80805	0.00322	0.01611	2.87564	0.00201	0.0	
0.2	0.13546	0.01278	0.06391	1.01561	0.01348	0.06741	3,75440	0.01249	0.06244	7,44285	0.00788	0.0	
0.4	0.10428	0.04430	0.22150	0.83924	0.04669	0.23346	5.11847	0.04421	0.22105	15.41021	0.02913	0.1	
0.8	0.09011	0.10975	0.54877	0,63961	0.11484	0.57418	3.38600	0.11468	0.57342	9.70261	0.08714	0.4	
1.6	0.08777	0.13755	0.68777	0.65723	0.13726	0.68630	1.81603	0.13687	0.68436	7.02380	0.13705	0.6	
3.2	0.04129	0.10147	0.50736	0.38165	0.09467	0.47335	1,75101	0.07578	0.37890	2.35459	0.06594	0.3	
			$k_2 = 2.0$			$k_{\rm T} = 2.0$			$k_1 = 2.0$			Ax -	
0.1	0.12285	0.01693	0.00846	0.70622	0.01716	0.00858	1.81178	0.01542	0.00771	3,02259	0.00969	0.0	
0.2	0.12916	0.06558	0.03279	0.97956	0.06647	0.03324	3.76886	0.06003	0.03002	8.02452	0.03812	0.0	
0.4	0.08115	0.23257	0.11629	0.70970	0.23531	0.11766	5,16717	0.21640	0.10820	17.64175	0.14286	0.0	
0.8	0.01823	0.62863	0.31432	0.22319	0.63003	0.31501	3.43631	0.60493	0.30247	27.27701	0.45208	0.2	
1.6	-0.04136	0.98754	0.49377	-0.19982	0.97707	0.48853	1.15211	0.97146	0.48573	23.38638	0,90861	0.4	
3.2	-0.03804	0.82102	0.41051	-0.28916	0.84030	0.42015	-0.06894	0.88358	0.44179	11.87014	0.91469	0.4	
			$k_2 = 20.0$			$k_2 = 20.0$			$k_2 = 20.0$			kg .=	
0.1	0.12032	0.03667	0.00183	0.69332	0.03467	0.00173	1.80664	0.02985	0.00149	3.17763	0.01980	0.0	
0.2	0.11787	0.14336	0.00717	0.92086	0.13541	0.00677	3.74573	0.11697	0.00585	8.66097	0.07827	0.0	
0.4	0.03474	0.52691	0.02635	0.46583	0.49523	0.02476	5.05480	0.43263	0.02163	20.12259	0.29887	0.0	
0.8	-0.14872	1.61727	0.08086	-0.66535	1.49612	0.07481	2.92533	1.33736	0.06687	36.29943	1.01694	0.0	
1.6	-0.50533	3.58944	0.17947	-2.82859	3.28512	0.16426	-1.27093	2,99215	0.14961	49.40857	2.64313	0.1	
3.2	-0.80990	5.15409	0.25770	-5.27906	5.05952	0.25298	-7.35384	5.06489	0.25324	57.84369	4.89895	0.2	
			$k_2 = 200.0$			$k_{\rm T}~=~200,0$			$k_7 = 200.0$			$k_2 =$	
0.1	0.11720	0.05413	0.00027	0.67488	0.04848	0.00024	1.78941	0.04010	0.00020	3.26987	0.02809	0.0	
0.2	0.10495	0.21314	0.00170	0.85397	0.19043	0.00095	3.68097	0.15781	0.00079	9.02669	0.11136	0.0	
0.4	-0.01709	0.80400	0.00402	0.21165	0.71221	0.00356	4.80711	0.59391	0.00297	21.56482	0.43035	0.0	
0.8	-0.34427	2.67934	0.01340	-1.65954	2,32652	0.01163	1.90825	1.95709	0.00979	41.89873	1.53070	0.0	
1.6	-1.21139	7.35978	0.03680	-6.47707	6.26638	0.03133	-5.28803	5,25110	0.02626	69.63157	4.56707	0.0	
3.2	-2.89282	16.22830	0.08114	-16.67376	14.25621	0.07128	-21.52546	12.45058	0.06225	120.95931	11.42045	0.0	

TABLE 2.3. Three-Layer Stress Factors (after Jones)

Effect of Tire Load and Pressure

For most rational design procedures ε_t , ε_c are required. Their levels are limited to keep fatigue and rutting from occurring too soon.

Development of layered elastic theory:

- 1) 1848 Kelvin elastic half space
- 2) 1885 Boussinesq elastic half space
- 3) 1926 Westergard 2 layers
- 4) 1943 Burmister > 2 layers
- 5) 1948 Fox solution for two
- layers
- 6) 1961 Jones & Peattie 3 layers
- 7) 1963 5 layers
- Commercial programs \geq

Layer theory general rule:

- Increase in flexural stiffness of any layer (E) will decrease the stresses and strains in layers below.
- 2. Stiff layers attract stresses. (may lead to failure)
- 3. Elastic linear theory is valid, providing temperatures are not high, speed is not low, and the pavement has > thin stabilized layer.

Computer Programs:

- 1- CHEV5L (CHEVRON) \leq 5 layers, 1 load, Linear elastic.
- 2- PSAD (CHEVRON) As CHEV5L but Non-
- linear
- 3- PSAD2A (CHEVRON) As PSAD with 2 Loads.
- 4- ELSYM5 (Univ. of California) \leq 5 layers, \leq 10 loads,

linear elastic.

5- BISAR (SHELL)

 \leq 10 layers, \leq 10 loads, linear can include shear forces.

- 6- BOUSS (OSU)

 \leq 10 layers, 1 load,

approx. linear.

MULTI-LAYER STRUCTURAL ANALYSIS FHWA (ELSYM5)

18,000 Lbs = 80 KN

