WATER DISTRIBUTION NETWORKS

CE 370

Water Distribution System

Water distribution systems are designed to adequately satisfy the water requirements for a combinations of the following demands:

- Domestic
- Commercial
- Industrial
- Fire-fighting

The system should be capable of meeting the demands at all times and at satisfactory pressure

Water Distribution System

The main elements of the distribution system are:

- Pipe systems
- Pumping stations
- Storage facilities
- Fire hydrants
- House service connections
- Meters
- Other appurtenances

System Configurations

Distribution systems may be classified as:

- Branching systems
- Grid systems
- A combination of the above two systems
$>$ The configuration of the system is dictated by:
- Street patterns
- Topography
- Degree and type of development of the area
- Location of the treatment and storage works.

Figure 6.4 Types of water distribution systems: (a) Branching, (b) grid, and (c) combination.

System Configurations

Branching vs. grid systems:

- A grid system is usually preferred over a branching system, since it can furnish a supply to any point from at least two directions
- The branching system has dead ends, therefore, does not permit supply from more than one direction. Should be avoided where possible.
- In locations where sharp changes in topography occur (hilly or mountainous areas), it is common practice to divide the distribution system into two or more service areas.

Basic System Requirements

Pressure:

- Pressure should be great enough to adequately meet consumer and fire-fighting needs.
- Pressure should not be excessive:
- Cost consideration
- Leakage and maintenance increase
$>$ Capacity:
- The capacity is determined on the bases of local water needs plus fire-fighting demand.
- Pipe sizes should be selected to avoid high velocities:
- Pipe sizes should selected based on flow velocity of 3-5 fps
- Where fire-fighting is required, minimum pipe diameter is 6 in.

Hydraulic Design

$>$ The design flowrate is based on the maximum of the following two rates:

- Maximum day demand plus fire demand
- Maximum hourly rate

Analysis of distribution system:

- Distribution system have series of pipes of different diameters. In order to simplify the analysis, skeletonizing is used.
- Skeletonizing is the replacement of a series of pipes of varying diameters with one equivalent pipe or replacing a system of pipes with one equivalent pipe.

Hydraulic Design

Example:

Consider the piping system shown in the figure, replace (a) pipes BC and CD with an equivalent $12-\mathrm{in}$. pipe and (b) the system from B to D with an equivalent $20-$ in. pipe.

Solution:

- a) for pipes in series:

1. assume any value for Q through BCD (8 cfs)
2. from nomograph with $\mathrm{Q}=8 \mathrm{cfs}$ and dia $=18$-in, read head loss for $\mathrm{BC}=6.1 \mathrm{ft} / 1000 \mathrm{ft}$
3. from nomograph with $\mathrm{Q}=8 \mathrm{cfs}$ and $\mathrm{dia}=16-\mathrm{in}$, read head loss for $\mathrm{CD}=11 \mathrm{ft} / 1000 \mathrm{ft}$
4. total head loss $\mathrm{BD}=(6.1 / 1000) * 200+(11 / 1000) * 500=6.72 \mathrm{ft}$

Nomograph for Hazen Williams equation

Hydraulic Design

5. the total head loss for 12 -in equivalent pipe at 8 cfs is $45 \mathrm{ft} / 1000 \mathrm{ft}$ (from nomograph)
6. head loss $\mathrm{BCD}=$ head loss BD , therefore;

$$
\begin{aligned}
& 6.72 \mathrm{ft}=\mathrm{L}_{\mathrm{eq}} *(45 / 1000) \\
& \mathrm{L}_{\mathrm{eq}}=6.72 *(1000 / 45)=149 \mathrm{ft}
\end{aligned}
$$

- b) for pipes in parallel:

1. assume any value of head loss between $B D\left(h_{L}=5 \mathrm{ft}\right)$
2. for the equivalent pipe ($\mathrm{L}=149 \mathrm{ft}$), head loss per 1000 ft is;
$\mathrm{h}_{\mathrm{L}}=(5 / 149) * 1000=33.5 \mathrm{ft} / 1000 \mathrm{ft}$
Diameter of equivalent pipe $=12$-in
$\mathrm{Q}_{\text {eq }}=6.8 \mathrm{cfs}$ (from nomograph)

Hydraulic Design

3. for the 900 ft 12 -in pipe:
$h_{L}=(5 / 900) * 1000=5.5 \mathrm{ft} / 1000 \mathrm{ft}$
$\mathrm{Q}_{900}=2.6 \mathrm{cfs}$ (from nomograph)
4. total flow $=6.9+2.6=9.4 \mathrm{cfs}$
5. for $\mathrm{Q}=9.4 \mathrm{cfs}$ and 20 -in pipe:
head loss $=4.8 \mathrm{ft} / 1000 \mathrm{ft} \quad$ (nomograph)
6. head loss 12 -in pipe $=$ head loss 20 -in pipe

$$
\begin{gathered}
5 \mathrm{ft}=\mathrm{L} *(4.8 \mathrm{ft} / 1000 \mathrm{ft}) \\
\mathrm{L}=5 *(1000 / 4.8)=1042 \mathrm{ft}
\end{gathered}
$$

Hydraulic Design

Pipe networks:

- Pipe networks are composed of a number of constant-diameter pipe sections containing pumps and fittings.
- From next figure, following are defined:
- Node: end of each pipe section. (A, B, C, D, E, F, G, and H)
- Junction node: points where pipes meet and where flow may be introduces or withdrawn. (B, C, D, E, F, and G)
- Fixed-grade nodes: points where constant grade is maintained. (A and B)
- Loops: closed pipe circuits. (1 and 2)
- From above terminology, we can write the following eq.

$$
\mathrm{P}=\mathrm{J}+\mathrm{L}+\mathrm{F}-1
$$

Where: $\mathrm{P}=\#$ pipes, $\mathrm{J}=\#$ Junction node, $\mathrm{L}=\#$ loops,
F = \# fixed-grade nodes

Pipe Network

Hydraulic Design

Loop equations:

- Hydraulic performance of pipe networks are based on mass continuity and energy conservation.
- Continuity of mass:
$\Sigma \mathrm{Q}_{\text {in }}-\Sigma \mathrm{Q}_{\text {out }}=\mathrm{Q}_{\mathrm{e}}$ (J number of equations)
$\mathrm{Q}_{\mathrm{in}}=$ inflow into node

$\mathrm{Q}_{\text {out }}=$ outflow from node
$\mathrm{Q}_{\mathrm{e}}=$ external flow into the system or withdrawal
- Conservation of energy:
$\Sigma \mathrm{h}_{\mathrm{L}}=\Sigma \mathrm{E}_{\mathrm{p}} \quad$ (L number of equations)
$h_{L}=$ head loss; $\quad E_{p}=$ pump head
For fixed-grade nodes, the following can be written:
$\Delta \mathrm{E}=\Sigma \mathrm{h}_{\mathrm{L}}-\Sigma \mathrm{E}_{\mathrm{p}} \quad$ (F-1 equations)

Hydraulic Design

Loop equations: (continue)

- Frictional losses in pipes:
$h_{\text {LP }}=K_{P} Q^{n}$
Where;
$K_{P}=$ constant incorporating pipe size, its roughness, and units used
$\mathrm{n}=$ an exponent
The Hazen-Williams formula for head loss is given as:
$h_{L P}=K_{P} Q^{1.85}$
- Minor losses:

These losses are due fittings, valves, meters, or other insertions that affect the flow. They are expressed as:
$\mathrm{h}_{\mathrm{LM}}=\mathrm{K}_{\mathrm{M}} \mathrm{Q}^{2}$
Where;
$\mathrm{K}_{\mathrm{M}}=$ minor loss constant

Hydraulic Design

Node equations:

- When considering nodes, the principle relationship used is the continuity equation:

$$
\mathrm{Q}_{\text {in }}-\mathrm{Q}_{\text {out }}=\mathrm{Q}_{\mathrm{e}}
$$

- The discharge in pipe ab can be expressed in terms of grade (head) as the following:
$h_{L}=K Q^{n}$
$h_{\text {Lab }}=h_{a}-h_{b}=K_{a b} Q^{n}$
Or
$\mathrm{Q}_{\mathrm{ab}}=\left\{\left(\mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{b}}\right) / \mathrm{K}_{\mathrm{ab}}\right\}^{1 / \mathrm{n}}$

Hydraulic Design

Node equations:

- If pump exist in the line, then junction nodes are specified at the inlet and outlet.

for continuity:
$\mathrm{Q}_{\mathrm{ab}}=\mathrm{Q}_{\mathrm{cd}}$
$\left\{\left(\mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{b}}\right) / \mathrm{K}_{\mathrm{ab}}\right\}^{1 / \mathrm{n}}=\left\{\left(\mathrm{h}_{\mathrm{c}}-\mathrm{h}_{\mathrm{d}}\right) / \mathrm{K}_{\mathrm{cd}}\right\}^{1 / \mathrm{n}}$
$\mathrm{h}_{\mathrm{a}}-\mathrm{h}_{\mathrm{b}}=\left(\mathrm{K}_{\mathrm{ab}} / \mathrm{K}_{\mathrm{cd}}\right)\left(\mathrm{h}_{\mathrm{c}}-\mathrm{h}_{\mathrm{d}}\right)$
The head change across pump is:
$\mathrm{h}_{\mathrm{c}}-\mathrm{h}_{\mathrm{b}}=\mathrm{P}(\mathrm{Q})$
$\mathrm{P}(\mathrm{Q})=$ is the head developed by the pump $=(550 \mathrm{hp}) /(\gamma \mathrm{Q})$
$\mathrm{hp}=$ horsepower, $\gamma=$ weight of water, $\mathrm{Q}=$ flow

Distribution Reservoirs

Definition:

Distribution reservoirs provide service storage to meet the widely fluctuating demands often imposed on the distribution system, to accommodate fire-fighting and emergency requirements, and to equalize operating pressure.

Types of reservoirs:

- Surface reservoir
- Usually lined with concrete, gunite, asphalt, or membrane.
- They may be covered or uncovered, but usually covered to prevent contamination.
- Standpipes or elevated tanks
- Normally employed where the construction of a surface reservoir would not provide sufficient head.
- Stand pipes are tall cylindrical tanks whose storage volume includes an upper portion (useful storage) and a lower portion (supporting storage).

Distribution Reservoirs

Location

- Distribution reservoirs should be located strategically for maximum benefits.
- Normally the reservoir should be near the center of use.
- For large areas, a number of reservoirs may be located at key locations
- A central location decreases the friction losses by reducing the distance to the serviced area.

Storage function

- To provide head required head.
- To provide excess demand such as:
- fire-fighting: should be sufficient to provide flow for 10-12 hours.
- emergency demands: to sustain the demand during failure of the supply system and times of maintenance.
- To provide equalization storage.

Figure 6.20 Pressure distribution as influenced by the location of a distribution reservoir.

Pumping

Introduction

- Pumping is an important part of the transportation and distribution system.
- Requirements vary from small units (few gallons per minute) to large units (several hundred cubic feet per second)
- Two kinds of pumping equipments are mainly used; centrifugal and displacement pumps.
Types of pumps
- Low-lift pumps: used to lift water from a source to the treatment plant
- High-service pumps: used to discharge water under pressure to the distribution system
- Booster pumps: used to increase pressure in the distribution system.
- Recirculation pumps: used within a treatment plant.
- Well pumps: used to left water from wells.

Centrifugal pumps

Used to lift and transport water
Widely used in water and wastewater applications due to:

- Simplicity of installation and operation.
- Compactness.
- Low cost compared to others.
- Operate under variety of conditions

How do they operate:

- On the principle of centrifugal force; force of pushing outwards.
- The impeller driven at high speed throws water into the casing
- Water is channeled through a nozzle to the discharge piping

Centrifugal pumps

Pumping head

- The pump operates against a certain head called Total Dynamic Head (TDH).
- TDH is composed of the following:
- The difference in elevation between the pump centerline and the elevation to which the water is to be raised.
- The difference in elevation between the level of the suction pool and the pump centerline
- The friction losses
- Velocity head
$\mathrm{TDH}=\mathrm{H}_{\mathrm{L}}+\mathrm{H}_{\mathrm{F}}+\mathrm{H}_{\mathrm{V}}$
Where;
$\mathrm{H}_{\mathrm{L}}=$ total static head
$\mathrm{H}_{\mathrm{F}}=$ total friction head
$\mathrm{H}_{\mathrm{V}}=$ velocity head ($\mathrm{V}^{2} / 2 \mathrm{~g}$)

Figure 6.25 Total static head: (a) Intake below the pump centerline and (b) intake above the pump centerline.

Centrifugal pumps

Power

- The theoretical horsepower required may be found by using the following equation:
$\mathrm{hp}=\mathrm{Q} \gamma \mathrm{H} / 550$
Where;
$\mathrm{Q}=$ discharge, cfs
$\gamma=$ specific weight of water, $62.4 \mathrm{lb} / \mathrm{ft}^{3}$
$\mathrm{H}=$ total dynamic head, ft

The actual hp required is obtained by dividing the theoretical hp by the efficiency of the pump.

Centrifugal pumps

System head

- The system head is represented by a plot of TDH vs. discharge for the system being studied.
- The plot is used to help in selecting the pumping unit.
- The system head curve will vary with flow since H_{F} and H_{V} are both a function of discharge.
- Since the static head H_{L} may vary as a result of fluctuating water levels, it is necessary to plot system head curves covering the range of variations in static head.

Figure 6.26 System head curves for a fluctuating static pumping head.

Centrifugal pumps

Pump characteristics

- Each pump has its own characteristics relative to power requirements, efficiency, and head developed as a function of rate of flow.
- These relationships are usually given as a set of pump characteristic curves for a specified speed.
- Pump characteristic curves are used in conjunction with system-head curves to select suitable pumping equipment for a particular installation.
- As the flow of the centrifugal pump increases, the head will fall.
- At maximum efficiency, the discharge is known as normal or rated discharge.
- To change the flow, the practical and efficient approach is to provide two or more pumps in parallel so that the flow may be carried at close to the peak efficiency.
- The normal range of efficiency is between $50-85 \%$.

Figure 6.27 Typical pump characteristic curves.

Figure 4-11 Characteristic curves for a centrifugal pump operating at a constant speed.

Centrifugal pumps

Selection of pumping units

- Normally the engineer is given the system-head characteristics curve and is required to find a pump or pumps to deliver the required flow.
- The system-head curve is plotted with the pump characteristics curve.
- The operating point is located at the intersection of the system-head curve and the pump characteristics curve. This point gives the head and flow at which the pump will be operating.
- A pump should be selected so that the operating point is also as close as possible to peak efficiency.
- Pumps connected in series; the total head equals the sum of the heads added by each pump (discharge stay constant).
- Pumps connected in parallel; the total discharge is the sum of the discharges of each pump at a given head (head stay constant).

(a)

Discharge
(b)

Figure 6.28 Characteristic curves fcr (a) series and (b) parallel pump operations of equal pumps

