Water Demand and Supply

CE 370 - Lecture 2

Components of a water supply system

The components of a water supply system may include:

- The water source (Dam, Well, River, etc...)
- Transmission system
- Treatment plant
- Distribution network

Example (1)

The last census population of a city was 67250 in the year 2000. What is the present population in the year 2007 given the following statistics:

	2000	2007
Utility connections (U)	19214	23057
School enrolment (S)	12933	15778
Telephone connections (T)	17698	21415

Continue			
	Year	City A Population	
$t_{o} \rightarrow$	1900	10400	$\leftarrow P_{o}$
	1910	12080	
n = 40	1920	17113	
	1930	28256	
$\begin{bmatrix} t_1 \\ t_1 \end{bmatrix} \rightarrow$	1940	38968	$\leftarrow P_1$
	1950	51230	
n = 40	1960	57770	
	1970	70507	
$t_2 \rightarrow$	1980	84628	$\leftarrow P_2$
	1990	101750	
	2000	185626	
			-

Continue

> The constants are obtained by the following equations:

$$P_{sat} = \frac{2P_o P_1 P_2 - P_1^2 (P_o + P_2)}{P_o P_1 - P_1^2}$$
$$a = \ln \frac{P_{sat} - P_o}{P_o}$$

$$b = \frac{1}{n} \ln \frac{P_o(P_{sat} - P_1)}{P_1(P_{sat} - P_o)}$$

