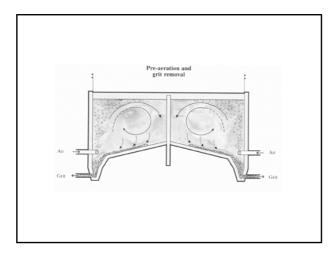


What Is Grit

- Sand and silt particles (mostly)
- ≻Cinders
- ➢Fragments of egg shells
- ➢Bone chips
- ≻Coffee grounds
- ➢Shredded garbage

Where Is It Used ?

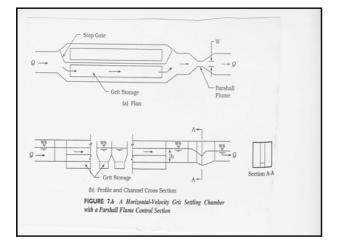
Municipal WastewaterIndustrial Wastewater

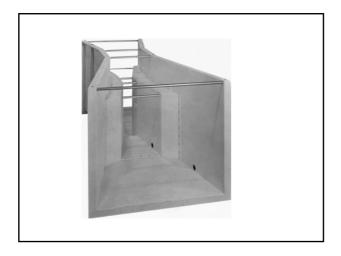

Why Grit Is Removed ?

- ➢Prevent wear on pumps
- Accumulation in aeration tanks
- ➢Accumulation in clarifiers
- Accumulation in digesters
- ➢Clogging of sludge piping

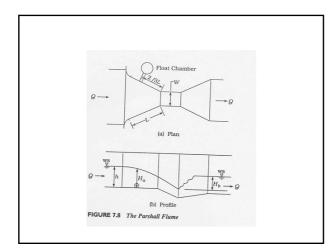
How Grit Is Removed

- ➢ Horizontal-velocity settling chambers
- ➢Diffused air chamber
- ≻Square settling chambers



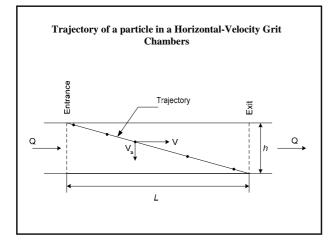


Horizontal-Velocity Grit Chambers

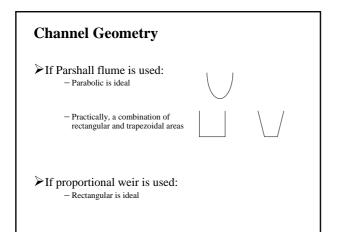

- \succ They are controlled by either A Parshall flume or
 A proportional weir
- ▶ Parshall flume is used more widely due to less head loss than the weir
- \blacktriangleright The flume and weir are also used to measure flow rates
- \blacktriangleright In the chamber, a constant horizontal velocity is maintained by proper cross-sectional geometry of the chamber

Discharge equation for Parshall flume

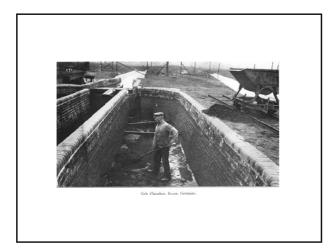
$$Q = CWH_a^{1.5}$$


- Q = discharge, ft³/sec (m³/s) C = 4.1 for USCS units and 2.26 for SI units W = throat width, ft (m)
- $-H_a = upstream depth, ft (m)$
- \blacktriangleright The equation is used with free-flow water (no backflow effects) and Q is a function of H_a

Horizontal-Velocity Grit Chambers


- Horizontal velocity must be adequate to keep organic matter in suspension
- Horizontal velocity should not be sufficient to scour settled grit along the bottom of the channel
- ► Values between 0.23 and 0.38 m/s are common

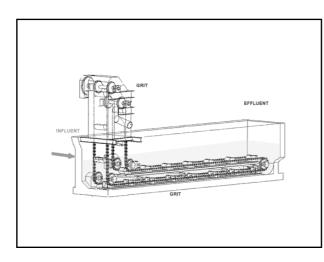

Design of Horizontal-Velocity Grit Chambers


- Once the cross sectional area is determined, the theoretical length must be determined.
- For a particle entering the chamber, the time required for it to settle to the bottom at the exit of the chamber is:
 - $t = h/V_s$ where:
 - h = water depth, $V_s =$ settling velocity, t = settling time
- The horizontal distance that the particle travels is the theoretical length:
 - L = Vt where:
 - L = theoretical length
 - V = horizontal velocity
- \blacktriangleright The actual length is 1.35 times the theoretical length

Aerated Grit Chambers

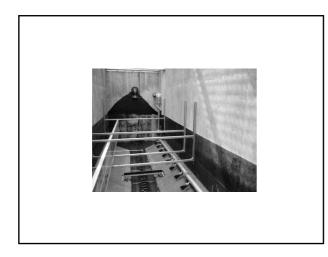
≻Shape of Chambers

-Rectangular (for medium to large treatment plants) -Square (for small to medium treatment plants) -Circular (for small to medium treatment plants)

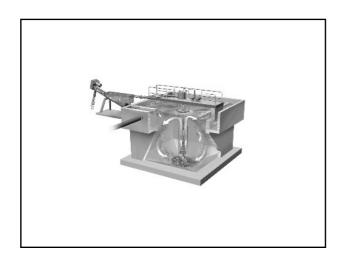

Air flow rate should be adjusted so that grit is removed 100%

-If velocity is low, organic particles may be removed along with the grit

➢Grit is removed by chain-driven buckets


> Detention time ranges between 2 to 5 minutes and is based on the peak flowrate

➢ Design criteria is shown in the next Table



Critaria far Aarot Item	od Spiral Dall Crit Chambor Value	
	Range	Typical
Dimensions		
Depth, ft (m)	7 - 16 (2.1 - 4.9)	
Length, ft (m)	25 - 65 (7.6 - 19.8)	
Width, ft (m)	8 - 23 (2.4 - 7.0)	
Width : depth ratio	1:1-5:1	1.5 : 1
Length : width ratio	3:1-5:1	4:1
Detention time at peak flow, min	2 – 5	3
Air supply, ft ³ /min-ft of length (m ³ /min-m of length)	2 - 5 (0.18 - 0.46)	
Grit quantities ft3/MG (m3/103 m3)	0.5 - 27 (0.004-0.200)	2.0 (0.01)

