CHEMICAL CONCEPTS

CE 370 – Lecture 3

Inorganic Chemistry

Definitions
Concentration Units
Chemical Equilibria
pH and Alkalinity

Hydrogen Ion Concentration

When pure water dissociates:

 $H_2O \Leftrightarrow H^+ + OH^-$

 \blacktriangleright concentration of H⁺ ion is 10⁻⁷ mole per liter

➤ concentration of OH⁻ ion is 10⁻⁷ mole per liter

Since H⁺ concentration = OH⁻ concentration, the pure water is neutral

Acidic or Basic?

> pH = log (1/[H⁺])

• [] means molar concentration (mole/l)

When $[H^+]$ concentration is 10⁻⁷, then pH =7, which represents the neutral state.

 \rightarrow If pH > 7, then it is basic

 \blacktriangleright If pH < 7, then it is acidic

> Water ionization is represented by:

• $[H^+][OH^-] = K_w = 10^{-14}$ (K_w is the ionization constant) Example: If the concentration of H⁺ in water is 10⁻² mole/l, what is the concentration of OH⁻ and the pH of the water. Solution: $[OH^-] = K_w / [H^+] = 10^{-14} / 10^{-2} = 10^{-12}$ pH = log (1/ 10⁻²) = 2

Buffers

- Buffers are substances that offer resistance to a pH change
- The main buffering system in water and wastewater is the bicarbonate-carbonate system

