Activated Sludge Processes

CE - 370

1

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

<section-header><section-header><complex-block><complex-block><complex-block>

Common organic materials in municipal wastewater are: - Carbohydrates (C, H, O0 - Fats (C, H, O) - Proteins (C, H, O, N, S, P) - Urea (C, H, O, N) - Soaps (C, H, O) - Detergents (C, H, O, P) - Traces of - Pesticides - Herbicides - Other agricultural chemicals >Activated sludge can be represented by: $-C_5H_7O_2N$ - Has a molecular weight of 113 18

$$-\frac{1}{X}\frac{dS}{dt} = k_s \left(\frac{S}{K_m + S}\right).....(1)$$

If S is very large, Km can be neglected, therefore S cancels out and the reaction is zero order in substrate. K is the rate constant for zero-order reaction.
If S is relatively small, it can be neglected in the denominator and the reaction is first-order in substrate. K is the rate constant for the first-order in the first constant for the first-order in the first constant for the first-order in the first constant for the

➢Rate Constant, K

- Depends on the specific wastewater
- For domestic wastewater, it ranges between 0.1 to 1.25 liter/(gram MLSS)(hr) using BOD_5
- Should be determined using lab-scale or pilot-scale studies
- In the absence of studies, K between 0.1 and 0.4 liter/(gram MLSS)(hr) is recommended

25

TYPE OF WASTEWATER	PSEUDOREACTION ORDER	REACTION RATE CONSTANT K ^a ℓ/(gm MLVSS)(hr) AT 25°C
Pulp and paper mill	First	0.375
Pulp and paper mill	First	0.528
Chemical manufacture	First	0.479
Chemical manufacture	First	0.601
Oil refinery	First	0.504
Oil refinery	First	0.660
Petrochemical manufacture	First	0.592
Petrochemical manufacture	First	0.686
Petrochemical manufacture	First	0.713
Petrochemical manufacture	First	0.911
Petrochemical manufacture	First	1.221
Petrochemical manufacture	First	1.333
Municipal (domestic)	First	1.717

EXAMPLE IS. AND IS.I S	 Biochemical Kin A kinetic stuu laboratory usin developed in a concentrations At 24 hours stage BOD), and of the MLSS. D terms of MLSS a E 15.2 Kinetic Data 	tetics dy of a soluble g a batch reactor continuous-flow for the various r rs, the $BOD_5 = 4$. d the BOD_4 is equi- etermine the reac and MLVSS. a from Batch Test	organic wastewater inoculated from a p activated sludge rea- action times were a $2 \text{ mg}/\ell$, the BOD ₅ = 0 al to the degradable tion order and the n	has been done in that acclimated cultu- ctor. The coD and ML is shown in Table 15.2 0.35 BOD_u (ultimate firs coD. The MLVSS = 88° reaction rate constant
REAC	TION TIME (hr)	COD (mg/ℓ)	MLSS (mg/l)	
0		680	1910	
1		440	2180	
2		240	2210	
3		165	2190	
4		128	2130	
24		115	2090	
		102	1000	
SOLUTION The r 102 - reacti point	nondegradable con- - $4.2/0.35 = 102$ ion, the data are st at 24 hours is not	to is equal to the 2 - 12 = 90 mg hown in Table 15 t used in the redu	cod at 24 hours min $\ell\ell$. Assuming a pse 3 for a time up to 5 ced data in Table 15	nus the BOD_u or $Pudo-first-order$ hours. The data 5.3, because the

		TABLE 15.3 Reduced Data from Batch Test					
TIME, r (hr)	DEGRADABLE cod (mg/{)	X MLSS (mg/l)	X MLSS (mg/ℓ)	⊼t (mg/ℓ)(hr)			
0	590	1910					
1	350	2180	2045	2,045			
2	150	2210	2060	4,120			
3	75	2190	2050	6,150			
4	38	2130	2020	8,080			
5	25	2090	2000	10,000			

The plot of $\ln S_t$ versus $\overline{X}t$ is shown in Figure 15.8. Since it is a straight line, the reaction is pseudo-first order and from the slope, $K (\text{MLSS}) = 0.316\ell/$ (gm MLSS-hr). K (MLVSS) = K (MLSS)/0.88; therefore, K (MLVSS) = 0.3160.88 or $K (\text{MLVSS}) = 0.359 \ell/(\text{gm MLVSS-hr})$.

29

