
#### Abstract

Alkalinity in water. III. Materials: Burette, 25 ml Porcelain dish Magnetic stirrer and rod Beaker, 150 ml Pipetter Measuring cylinder, 100 ml pH meter 0.02 N Sulphuric acid Methyl Orange indicator Phenolphthalein indicator Tap water sample Sweet water sample Synthetic samples


I. Purpose: To become familiar with the concept of alkalinity and its measurement
II. Definition: Alkalinity of a water is a measure of its capacity to neutralize acids.
IV. Procedure - Indicator Method:

1. Pipette exactly 100 ml of sample into a porcelain dish and drop in a magnetic rod.
2. Mount a 25 ml burette and fill it to the mark with 0.02 N sulphuric acid solution.
3. Add 5 drops of Phenolphthalein indicator to the sample. If the solution turns pink, add acid slowly till pink color disappears. Record the volume of acid in milliliters as P .
4. Add 5 drops of Methyl Orange indicator to the same sampling at the end of the first titration and add 0.02 N sulphuric acid slowly till orange color turns to pink. Record this volume as M . Then, $\mathrm{T}=\mathrm{P}+\mathrm{M}$.
V. Procedure - Potentiometric Method (pH meter):
5. Pipette exactly 100 ml of sample into a 150 ml beaker and drop in a magnetic rod.
6. Fill the burette with 0.02 N sulfuric acid solution.
7. If the pH of the sample is above 8.3 add 0.02 N sulphuric acid slowly till pH 8.3. Record the volume of acid as P .
8. Continue addition of acid till the pH of the sample reaches 4.5. Record volume of the acid as M . Then, $\mathrm{T}=\mathrm{P}+\mathrm{M}$.
VI. 1. Test additional water sample by either procedure.
VII. 1. Determine the various species of alkalinity present in the samples using the relationships shown below.

| Condition | $\mathrm{OH}^{-}$ | $\mathrm{CO}_{3}{ }^{-}$ | $\mathrm{HCO}_{3}{ }^{-}$ |
| :--- | :---: | :---: | :---: |
| 1. $\mathrm{P}=\mathrm{T}$ | T | 0 | 0 |
| 2. $\mathrm{P}=1 / 2 \mathrm{~T}$ | 0 | 2 P | 0 |
| $3 . \mathrm{P}>1 / 2 \mathrm{~T}$ | $(2 \mathrm{P}-\mathrm{T})$ | $2(\mathrm{~T}-\mathrm{P})$ | 0 |
| 4. $\mathrm{P}<1 / 2 \mathrm{~T}$ | 0 | 2 P | $(\mathrm{T}-2 \mathrm{P})$ |
| 5. $\mathrm{P}=0$ | 0 | 0 | T |

2. Record the titration data in the following table.

| Sample | P <br> $(\mathrm{ml})$ | T <br> $(\mathrm{ml})$ | P \& T Condition |
| :---: | :---: | :---: | :---: |

Tap water
Sample A
Sample B
Sample C
VIII. Calculations:

Alkalinity, $\mathrm{mg} \mathrm{CaCO}_{3} / 1=\frac{\mathrm{A} \times \mathrm{N} \times 50,000}{\mathrm{ml} \text { sample }}$
$\mathrm{A}=\mathrm{ml}$, sulphuric acid solution used
$\mathrm{N}=$ normality of acid solution.
Using the above data, calculate the concentrations of the various species of alkalinity for each sample and list in the following table.

| Sample | $\mathrm{OH}^{-}$ | $\mathrm{CO}_{3}{ }^{-}$ | $\mathrm{HCO}_{3}{ }^{-}$ |
| :--- | :--- | :--- | :--- |

Tap water
Sample A
Sample B
Sample c

