
Vibrational and acoustical experiments
on logs of spruce

D. Ouis

Summary This paper presents the results of some vibro-acoustical experiments
conducted on logs of spruce. The aim from this study was in the beginning to
study the possibilities of investigating acoustically the presence of decay in the
stems of standing trees, and for assessing the strength of wood in the shape of
logs. First, a brief review is made for the different experimental techniques used in
studying the response of mechanical systems in general with emphasis on an
ef®cient technique used for evaluating the impulse response of vibrating systems.
Then a literature survey on the effects of decay on the strength and on the
damping properties of wood are presented with some practical general
implications regarding decay inspection of wood composites. Lastly some
experiments using vibrations and sound which were conducted on two specimens
of wood logs, one sound and one decayed, are presented with some discussions
regarding the implementations of these methods for the quality grading and
defect detection in wood logs and standing trees.

Introduction
Wood has played a role in the history of mankind such that man has never
thought of staying away from its use. For this reason, historians have never talked
about a ``wood age'' in the life of humanity. For the cave man, wood was used for
heating and for protection from wild animals and upon leaving his cave, the
primitive man relied once more on wood to use it as his ®rst building material.
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This function is still ful®lled, although to a lower grade, by wood in men's modern
society. Even more important, there is nowadays a trend towards encouraging
people for habitation in wood made houses and this has in turn boosted research
activities in several branches having connection to the building sector. This sit-
uation is supported by three main facts which are ®rstly the relative abundance of
wood as a material, then its lesser degrading effect on health as compared to some
other materials and lastly that improved techniques are constantly elaborated in
both the prevention and the control of eventual ®re hazards in wooden dwellings.
The use of wood is not restricted to building elements only but extends to other
industrial areas as well. Furniture manufacturing for instance is depending almost
a 100% on forest products and this applies as well to the non-negligible industry
of paper. The comparatively lower price and easier transportation mode of
wooden utility poles have made of them an uncomparable substitute to their
concrete or metallic counterparts in supporting electric power supply or tele-
phonic cables. These are in short some of the domains where wood is a main
provider either as a raw, a semi-®nished or ®nished product, and one can already
realize that this natural renewable material stands for an important share in the
domestic investment of many countries worldwide.

Like any other material, wood may have some defects in it and these are in
general classi®ed under two categories. The ®rst category includes all malfor-
mations in the tree trunk like knots, splits and cross grain resulting from the
natural adaptive development of the tree, and the other category concerns those
defects caused by external agents and which degrade principally the strength of
the material. The results of the work presented here are concerned with this latter
kind of defects because wood as the material of building bearing parts is sought
primarily for its strength. In contrast, the other kind of defects is most often bare
detectable and these make sometimes a set of various aesthetic features for fur-
niture elements. Due to natural growth patterns, such variability which concerns
almost all properties of wood, is not only restricted from one tree to the next one,
but even within the same tree depending on the height and radial position in the
stem.

Experimental determination of the response of vibrating systems
The various classical experimental methods generally used in producing or de-
tecting stress waves and vibrations in elastic elements and structures may be
found in Appendix C of (Graff 1975). The earliest measurement procedures in
mechanics were using methods employing analogue equipments and one can ®nd
in Chapter I of (Cremer and Heckl 1988) a comprehensive presentation of the
principles behind the various measurement methods and the instrumentation for
the generation and sensing of structure-borne sound. Vibrational and acoustical
measurement methods are broadly divided into two categories. First, the fre-
quency domain measurements are mainly made to localize the resonance fre-
quencies of vibrating objects. They are accomplished through driving the object
under test with a continuous sinusoidal signal through a transducer, and by
sweeping slowly the signal frequency. The response is sensed by a gauge and may
sometimes be presented on paper by a plotter or any other printing device. This
method, sometimes also called resonance method, is also used to determine the
damping coef®cients of vibrating structures through studying the width and
height of the resonance curves. This is illustrated in Fig. 1 for the case of a simple
Single-Degree-of-Freedom (SDOF) system. The other measurement method is
used for time domain measurements and is best suited for determining the im-

152



pulse response of a system (the response of the system when the excitation is
made of an extremely short signal), and consequently the strength and delay of
the different re¯ections occurring in the system. The impulse response of a
system is in a way its signature and most, if not all, of the important quantities
characterizing the system may actually be processed from its impulse response. In
this case, the response is often visualized on the screen of an oscilloscope. The
input signal can be a short wavetrain concentrated around a speci®c frequency
(e.g. a so-called Gauss-tone) for dispersion and mode-coupling investigations, or
a single short broad-band pulse (rectangular or half-cosine) for re¯ections de-
termination. Theoretically, this latter case would be related to the frequency
domain method through a simple Fourier transform, and the shorter is the signal,
the more distinctly the re¯ections are separated on the time scale. Ideally, a short
pulse, and in the limit a Dirac delta pulse being vanishingly short, in®nitely
intense but containing a ®nite value of energy would be very broad-band in its
frequency containt. Unfortunately, commercial pulse generators are impossible to
ful®l such a performance, and continuous signal generators are rather limited in
the frequency range of the signals they deliver.

These different measurement methods of limited ¯exibility necessitated rather
long times to carry out average measurements, and extreme care and patience to
avoid repeating them. In the various engineering branches dealing with wave
propagation and vibrations, experimentators and theoriticians in quest of veri-
fying their theoretical predictions were thus in need of more ef®cient measuring
equipment. This had to wait until around the year of 1965 with the upcoming of
the Fast Fourier Transform (FFT) algorithm which enables transforming time-
data into the frequency domain or vice-versa in an ef®cient manner. This event
followed by the rapid developments of the Very Large-Scale Integration (VLSI) in
the semi-conductor technology and that of the digital techniques in ®ltering and
averaging marked a decisive turn in the history of experimental research when
these factors introduced in the market moderately-priced FFT-based measure-
ment systems. Earlier spectra measurements based on cross-correlation calcula-
tions became very rapid and the old methods using random noise excitations
became more elegant and diversi®ed. For impulse response measurements, a
powerful measuring scheme of widespread use nowadays in room- and structural
acoustics is based on Maximum Length Sequences (MLS) a kind of pseudo-

Fig. 1a,b. Example of a Single-degree-of-freedom (SDOF) system in vibration. a System,
b Typical frequency response
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random test signal which has in a way similar properties to random signals
though it is deterministic. This method which is brie¯y presented here is de-
scribed in detail in (Kuttruff 1991).

Let a stationary signal s(t) be applied to a linear system for which we are
seeking the impulse response g(t), Fig. 2.

The response-signal s¢(t) collected by a sensing detector (a microphone for a
room or an accelerometer for a vibrating structure) at the other end of the
measurement chain may then be expressed as a convolution integral according to:

s0�t� �
Z�1
ÿ1

s�t0�g�tÿ t0� dt0 �1�

where t is time. In present days, analogue signals are digitized by Analogue to
Digital Converters (ADC) and continuous integrals of the Fourier type are ap-
proximated by discrete summations (Discrete Fourier Transform, DFT), all along
with many other processing stages in a single instrument. The cross-correlation
function of the excitation signal s and the received signal s¢ is then given by:

uss0 �s� � lim
T0!1

1

T0

Z�T0=2

ÿT0=2

s(t) dt

Z�1
ÿ1

g�t0�s�t� sÿ t0� dt0 �2�

which gives after interchanging the orders of integrations:

uss0 �s� �
Z�1
ÿ1

g�t0� lim
T0!1

1

T0

ZT0=2

ÿT0=2

s�t�s�t� sÿ t0� dt

264
375 dt0

�
Z�1
ÿ1

g�t0�uss�sÿ t0� dt0 �3�

From this last result, one can see that the cross-correlation uss0 �s� is equal to the
sought impulse response g�s� if the auto-correlation function uss�s� of the input
signal s is a delta function or at least approximates it. A signal with an auto-
correlation function concentrated at zero and which therefore can be used for this
measurement is the random noise. Actually, to avoid the cumbersome and rela-

Fig. 2. Illustration of a measurement method based on the cross-correlation principle
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tively time-taking operation of the integration, the cross-correlation function of
two signals is evaluated by means of Fourier transforms. First, the signals undergo
Fourier transforms (rapidly done through the FFT) which are then multiplied
with each other to give a cross-spectral density function and lastly, this latter goes
through an inverse Fourier transform (IFFT) giving thus the cross-correlation
function (Newland 1986).

Physical systems encountered in daily life are obviously much more complex
than the SDOF ones and their analysis is not so that simple as illustrated in Fig. 1.
Strictly speaking, all mechanical systems are continuous. The degree of freedom
of a SDOF system is de®ned as the elastic motion of the single mass in the system
and this concept is easily generalized to Multiple-Degree-of-Freedom (MDOF)
systems if one succeeds in describing the extended system as the build-up of
many small simple ones connected to each other by some coupling mechanisms.
This idea is not new in itself, and actually, one of the earliest reports on such
discretization dates back to Lagrange in 1788.

For studying the motion of systems such as beams and plates, the degrees of
freedom may for instance be taken as the displacement amplitudes of selected
points in the structure. The motion analysis of the whole system can thus be
satisfactorily described only by taking into account a large enough number of the
constituant simple elements. When this is possible, the study of a vibrating
system subdivided into n elements, which, incidently, is called a lumped-pa-
rameter system, leads to solving a system of an equally large number of equations
each describing the behaviour of each element in connection to the rest of the
elements by some coupling characteristics. The constitutive elements are usually
the combinations of ideal dimensionless masses and massless springs, dashpots
and resistances. Based on this discussion, it is thus not surprising to ®nd in the
literature the analogy between a complex system like a plate or a room to that of a
combination of an in®nite number of resonators each resonating at its own
resonance frequency and decaying with its own damping characteristic.

In Fig. 3 one sees the frequency response of a relatively simple mechanical
system having three vibrating masses, hence a three DOF system, and coupled to
each other by some springs.

Fig. 3a,b. Example of a three-degree-of-freedom system. a Mechanical system, b Typical
corresponding frequency response
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On the other hand and for a bounded system, re¯ection of waves at the
boundaries is of most practical importance inasmuch as this phenomenon is
responsible for the existence of sets of frequencies and associated patterns of
vibrations speci®c for a ®nite system. A bounded system can be driven by a
periodic excitation (forced excitation) of any frequency but when left for itself, it
would vibrate freely at speci®c frequencies called characteristic or natural-fre-
quencies or eigenfrequencies. To each eigenfrequency corresponds a speci®c vi-
bration pattern called characteristic or natural-mode, eigenmode or simply mode.
The eigenfrequencies can be measured from the frequency response curve of the
system where they exhibit quite marked peaks at the resonance frequencies and
having widths inversely proportional to their respective quality factors: it is more
dif®cult to separate visually the resonance frequencies of a well damped vibrating
system than those of a less well damped one. The values of the resonance fre-
quencies depend primarily on the size of the system and on the way it is hinged,
i.e. the boundary conditions to be satis®ed by the equation governing the motion
of the system. The mathematical form of this latter is also decisive for the
complexity of the expressions of the eigenmodes and their corresponding
eigenfrequencies. When the size of the system extends, the frequency distance
between two neighbouring resonances diminishes in proportionality to the size of
the system and this feature is more pronounced for systems extending in more
than one dimension in space. At the extreme case, a system extending to in®nity,
be it only in a single direction, would vibrate freely at any frequency. It is worth
noting at this point that as a universal observation, most of the complex vibrating
systems exhibit their strongest responses somewhere at their few lowest modes
and experimental investigations have therefore their most interesting applications
at relatively low frequencies.

In one dimension, the simplest example of a vibrating continuous system that
one can think may be that of the ¯exible string. If such a string of length l and of
mass per unit length q is stretched at its both extremities by a tension force F
(assuming the direction of F along, let us say, an x-axis), then the eigenmodes for
small transverse vibrations (linear treatment) would be proportional to
sin�npx/l�, where n is an integer and x the distance from any of the two ex-
tremities of the string. The corresponding eigenfrequencies are given by
fn � nc=2l; where c is the phase velocity of the wave propagation in the string and
is equal to �F=q�1=2. These relatively simple forms for the eigenmodes and the
eigenfrequencies of the vibrating elastic string are found from considering the
displacement u of the string's particles which in this case satis®es the well known
Helmholtz' wave equation:

o2u

ox2
ÿ 1

c2

o2u

ot2
� 0 �4�

If one takes the case of a beam, things become somehow more complicated. For
the ®rst, the motion of the beam cannot be described only by its ¯exibility i.e. the
tension is not the only restoring force in it as in the case for the string. A beam
presents some stiffness in its motion: one needs to spend more effort to bend a
bar than a ¯exible string. The stiffness property of a solid beam is put into
evidence by the well known fact that when bending a piece of metal for instance,
the curve resulting from the bending has two sides; a convex one where the
material is stretched and a concave one where the material is squeezed. This
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property is the basic mechanism for maintaining vibrations in solid elastic
structures and is characterized by a bending stiffness which will be de®ned
shortly later. Secondly, for the case of the string one can consider in general only
two motion possibilities for its extremities: either free or ®xed. For a bar on the
other hand, and due to its stiffness, there are more ways of attaching its ex-
tremities to the rest of a structure. The four most widely used ideal boundary
conditions are schematically represented in Fig. 4:

These cases are summarized in what follows:

a. Simply supported: no transversal de¯ection but free for rotation
b. Clamped : no translation and no rotation
c. free: free for lateral de¯ection and free for rotation
d. guided: (in this case) free for transversal de¯ection but no rotation.

Experimentally, the case b is the most dif®cult to realize while the case c is the
easiest one. There are many other ways for attaching a beam from its ends or for
supporting it along the whole of its length (see for instance Graff 1973, p. 154) or
(Timoshenko et al. 1974) but the four types described above are the simplest ones
used for theoretical calculations. It follows from this preliminary discussion that
the equation of motion for the particles of a beam must be more complicated than
that of a string. The often quoted Euler-Bernoulli theory provides the simplest
form of the equation for describing the bending motion of a beam (or a plate). For
the free vibrations of the undamped beam, this equation has the following form:

EI
o4u

ox4
� q

o2u

ot2
� 0 �5�

where E is the modulus of elasticity or Young's modulus of the material of the
beam and q its mass per unit length. I is the beam's moment of inertia and
depends on the geometry of its cross section which for instance for a rectangular
beam with sides b and h (bending direction) is given by:

I � bh3

12
�6�

One usually uses in vibration problems of beams the bending stiffness B � EI
which was introduced earlier and which is a measure of the beam's resistance to

Fig. 4a±d. The four ideal boundary
conditions of most use for a trans-
versally vibrating beam
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bending. At ®rst sight, one notices the fourth order of the space partial derivation
of the ®eld variable as compared to the second order one in the usual wave
equation (equation 4). This has important consequences on the behaviour of the
solutions of the equation. By choosing a harmonic solution with a circular fre-
quency x to equation 6, one deduces the frequency equation from which the
phase velocity of the wave is expressed as:

c �
���
B

q
4

s ����
x
p �7�

from which one recognizes the frequency dependence of the wave velocity; waves
with different frequencies spread with different velocities downward the beam
and an initial disturbance, a wave paquet, distords as it moves on the beam. This
phenomenon is called dispersion in analogy with the dispersion of white light into
its fundamental components as it spreads through the material of a glass prism.
Next, by choosing a set of boundary conditions for the general solutions of the
beam equation, one can calculate the eigenfrequencies for the beam and their
corresponding eigenmodes. For a bar of length l which is simply supported at its
ends, the eigenfrequencies are given by (Cremer and Heckl 1988):

fn � p
2

����
B

m

r
n2

l2 �8�

and we can see that the discrete eigenfrequencies are not in proportionality to the
integer numbers as for the case of the string but to their squares: the overtones
are not simple harmonics of the fundamental tone, hence the non-musical sound
emitted by a struck bar as compared to a string.

Although the whole study of sound is a study of vibrations, it has somehow
become an agreed upon matter within the acoustical community to well differ-
entiate between sound and vibration. The word sound has become mainly de-
voted to encompass all the phenomena of perturbation propagation in materials,
mainly liquid or gaseous, whereas vibration is in a way merely con®ned to the
motion of material structures, mostly solid, which could under favourable cir-
cumstances generate sound waves. One thus often says that a plate which vibrates
generates sound, and in this case, the separation area between sound and vi-
bration becomes in an abstract form just the radiating surface of the plate.

Non-destructive detection of decay in wood by vibrations
Vibrational methods are commonly used in engineering for assessing the strength
of materials and for checking the good serviceability of structures. Moreover, the
driving of a structure at resonance may cause mechanical failure of the structure
itself and reduce drastically its life time. As wood is a solid material and wood
products enter with a good proportion into the wide assortment of building
elements, it would then be natural to adapt the use of these vibrational methods
for testing the mechanical behaviour of wood as a raw material or the perfor-
mance of its composites under various physical conditions. Much research has
been conducted with this objective, and the mechanical properties of timber have
been reported back to at least the ®rst half of the nineteenth century (Hearmon
1966), much long before the development of ultrasonics and the radiological
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scanning techniques. Many researchers have in fact appreciably contributed to
understand the mechanical behaviour of wood and to quantify its physical
characteristics. For instance, the knowledge of the damping properties of wood
helps for a better reduction of vibrations and for more isolation of unwanted
noise (or oppositely at some advantage for more sound radiation as in the case of
musical instruments). However, wood is a much highly anisotropic material
which makes its mechanical properties much dependent on the direction of their
determination. Moreover, due to its remarkable inhomogeneity, even within the
same tree stem, it is quite impossible to derive a general standard testing method
for wood, and the diverse published data are often made on the basis of average
®gures. The most successful experimental results, i.e. those which support
strongly the theoretical predictions, have been conducted on small clear speci-
mens because the presence of the least defect, in some instances even a single
knot, may result in a wide variation of the value of the sought quantity (Chui
1991; Skatter 1996). Despite that, much progress has been made during the last
years in the characterization of wood by non-destructive vibration testing
methods. In fact, it seems as if wood research is taking its way back towards the
reintegration of vibro-acoustics into the case of testing tools (Bodig and Jayne
1882; Sobue 1986a,b).

For our part of concern, the progress of recent research on the detection of
decay in wood by vibration testing will be shortly reviewed. But ®rst, the effects of
decay on the various physical properties of wood must be exposed.

Effect of decay on the strength properties of wood
In the living tree, the wood of the trunk has to support the compression loads
from the weight of the crown above, and it has to resist the bending forces of the
wind. The ability of wood to resist loads is manifested in its strength and this
property depends on several factors which include the type of load (tension,
compression, shear), its direction and the wood species. Ambient conditions of
temperature and moisture content are also important as are past histories of load
and temperature (Schniewind 1989, p. 245). The strength of a sample depends
also on its size and specially on whether it is a clear piece free of defect or
containing defects in the form of knots, splits and the like.

The strength of a material is usually characterized by the values of its Modulus
of Elasticity (MOE) and its Modulus of Rupture, (MOR). For small amplitude
vibrations, the MOE determines the velocity of propagation of longitudinal waves
in the material and under the assumptions of elastic behaviour, the MOE is
de®ned as the slope of the stress-strain curve below the linear proportionality
limit. The MOR on the other hand is a measure of the ultimate stress before
rupture in a sample of material and is thus a parameter of mechanical failure.
Toughness, or the ability of a solid material to withstand shock loading is another
quantity for assessing the strength of wood. The values of the MOE for wood are
subject to the in¯uence of various factors. The direction in which the MOE is
measured is of ®rst importance and the lowest of its values is in the T-direction
which is tangential to the growth rings. About a doubling of this value is ac-
ceptable in the R-, radial direction but in the L-, longitudinal direction along the
axis parallel to the tree stem, the value is about an order of magnitude larger. The
moisture content (MC) of wood is also another important factor. MC is de®ned as
the rate in weight of water content to dry wood. This parameter has also a wide
range of values depending on wood species and age of timber. For a freshly sawn
timber, MC values have been measured in the range 35 to about 300%. A value to
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be retained in this context is the Fiber Saturation Point (FSP) which is designated
as the MC value at which the wood cell cavity has lost all of the free water inside it
but the cell walls are still satured with water (Schniewind 1989, p. 143). The value
of FSP is around 27% for the majority of the northern timbers and this is a critical
value at which changes occur in most of the important physical properties of
wood. Above the FSP, MC has almost no effect on the elastic properties of wood,
but below this value the MOE increases as MC decreases (Dunlop 1981; Schnie-
wind 1989, p. 77). The velocity of sound decreases for increasing MC (Nanami
et al. 1992a) and is in¯uenced by MC even above the FSP (Burmester 1965). The
determination of the MOE is also affected by many factors like the geometry of
the specimen and the thickness of the stressed area (Kunesh 1968).

Decay results from the attack of tracheid cell walls and the binding lignin by
fungi. Laboratory testing of the chemical decomposition of conifers by fungi has
revealed that brown rot fungi are more destructive than white rot fungi (Kirk and
Highley 1973). Blue stain for instance has been found to have a negligible effect on
either MOE or MOR of spruce (Glos 1989; Pratt 1979). Loss in strength which is
expressed as a percentage value of the comparable value for sound or undecayed
wood has been proposed for use in laboratory evaluation of decay severity (Toole
1971). Loss in strength of decayed wood often occurs before signi®cant loss in
weight and a signi®cant reduction in material density has in general not been
noticed during the decay process (Pratt 1979). Brown rot is by far more degrading
to the mechanical properties of spruce and white pine than white rot even in its
early stages when decay is still invisible. In conifers, the decomposition course is
also strongly in¯uenced by the latewood portion and the density of annual rings
(Bariska et al. 1983). The MOE is more affected by decay than the MOR. The
general relationship between strength and the effect of decay shows an initial
rapid loss of strength in the early stages followed by a gradual decrease in the rate
at higher weight losses (Kim et al. 1994). Toughness is more sensitive to the early
stages of decay than the MOE (Kim et al. 1994; Wilcox 1978). The consequences of
the early stages of decay on strength loss of wood have been reported as an
average loss in toughness of around 50% for only 1% weight loss (Wilcox 1978).
Measurements of strength in radial compression (force perpendicular to axis of
tree) on samples of Douglas-®r have showed that incipiently decayed wood
sustains an average 3% loss in MOR for 11% in MOE (Pratt 1979) and similar
measurements con®rmed the vulnerability of sapwood to fungal activity and its
faster degradation as compared to that of heartwood (Smith and Graham 1983).
These results support also earlier similar observations on the correlation between
strength loss in compression and the extent of decay (Breeze and Nilberg 1971).

Effect of decay on the damping properties of wood
The damping capacity of a material under vibration is determined by its ability to
decrease the amplitude of vibrations when left for itself. Wood has also some
damping properties and these are in turn affected by many factors. Decay, be-
cause it changes the physical structure of wood has also noticeable effects on its
damping properties. Generally speaking, decay increases damping (Dunlop 1983),
and brown rot has a more noticeable effect than white rot on particularly co-
niferous woods (Bariska et al. 1983). Damping depends also on the direction
along which it is determined. In transverse direction, radially to the tree stem,
damping may be as high as three times than damping in the longitudinal direc-
tion, i.e. along the grain. This has sometimes made measurements in the longi-
tudinal direction on wooden poles and standing trees more useful and attractive
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than in the transverse direction (Fukada 1950; Dunlop 1981). By knowing the
resonance properties of wooden elements, it is often possible to detect their
possible hosting to decay through exploring the widening of the frequency re-
sponse peaks at the resonances. These general observations ought also to be
interpreted in connection with the fact that damping in wood is a property de-
pending on frequency, temperature and MC, varying from species to species
(Fukada 1950) and affected by the lateral position and height in the tree trunk
(Ono 1983). Unfortunately, up to this date there is not a signi®cant research on a
more quantitative correlation between the different stages of decay and the rel-
ative amount of increase in damping, especially if one knows that damping and
the MOE go together in measurements of the sound radiation by impacted wood
(Tanaka et al. 1986).

Characterization of wood and its composites by vibrations:
Review of selected literature
For a variety of reasons and purposes non-destructive testing of wood is more
desirable than the use of destructive methods. As for the reasons, these can be for
instance the non-possibility of removing a sample from the suspected element for
laboratory testing because of its bearing function or its valuability. The purposes
of non-destructive evaluation of wood, or indeed of any material, are also nu-
merous. These can be shortly ranked in order of importance in: the rapidity of
carrying a test (this may be of particular concern to the early phases of the
manufacture of wood products), the repeatability and reliability of its results, the
handiness of its equipment and its cost. Earlier practices of testing of wood by
vibrational methods have focused mainly on the determination of its acoustical
properties for the making of musical instruments. As the building industry
cannot stay out of the need of timber, a classi®cation of its elastic and strength
properties became a necessity and the physical properties of wood related to its
strength are nowadays tabulated alongside with those of concrete and steel. More
recently, as the housing market is turning towards the more erection of wooden
light-weight dwellings, high demands are required for the realization of a less
noisy indoors environment. This in turn requires the knowledge of the damping
properties of wood and an improvement of this property with a proper design of
its products.

Most of the vibrational measurements on wood are made on relatively small
samples. This restriction on the size of the test specimen is also a requirement
from many standards. The test specimen has to be as free as possible from growth
defects like knots and cross-grain, unless the measurement is for the investigation
of these very defects (Chui 1991; DivoÂs and Sugiyama 1993; Gerhards 1982; Glos
1989; Schad et al. 1996). The anisotropy of wood should always be borne in mind
because all the elastic parameters characterizing it depend on the measurement
direction of their determination. If L, R, T design respectively the longitudinal,
radial and tangential directions in the tree stem, it is always much easier to obtain
samples in the LR or the LT planes than in the RT plane. Some authors have quite
recently discussed the pros-and-cons of the inspection and characterization of
wood by the diverse vibrational methods (Chui 1989; Chui and Smith 1990; Glos
1989; Haines et al. 1996).

The testing methods have also been given a share of cause in explaining the
discrepancies observed sometimes in the various reported data on a same
quantity. Recently, many questions has arisen again around the effect of the size
of the wooden test specimen on the determination of the elastic parameters. As an

161



example, the determination of the value of the modulus of elasticity, MOE, is
made from measurements on beams and depends on whether the experiment is of
a static or of a dynamic type. This has to be taken into consideration because
usually static values of MOE are sensibly smaller than the dynamic ones (Bu-
rmester 1965). This change in elastic properties with frequency is a fact that is
more or less true for almost all materials and wood is not an exception. The
dynamical experimental procedure is often opted for because of its rapidity and
again, the evaluation of the MOE in this case depends on whether the beam is set
into ¯exural or longitudinal vibrations. Experimental results show lower values of
MOE for larger specimens and higher values from longitudinal measurements as
compared to those from bending results. These variations in the measured data
have also been attributed partly to the rather viscoelasticity (time dependent
deformation) of wood (Bodig and Jayne 1982, p. 185; Dunlop 1978; Haines et al.
1996) which supports observations using verly low frequencies (Becker 1980).

Although wood is not a perfectly elastic material (Bodig and Jayne 1982), much of
the published material on the characterization of this material supports to a rela-
tively high degree of con®dence the incorporation of wood into the category of
elastic materials. Already from the beginning, researchers in wood technology were
aware of using the most ef®cient theoretical tools in predicting the wood properties
they were in quest of. One of the pioneers in this ®eld is Hearmon who through his
long carrier has provided the scienti®c community with valuable information re-
garding the use of the bending wave theory with its various improvements to ex-
periments involving wooden beams (Hearmon 1958; 1966). In his earlier
publications he could prove that the simple beam theory of Euler should include the
effects of rotatory inertia (Rayleigh's correction) and shear (Timoshenko correc-
tion) in order to match the experimental results to the theoretical calculations. Later
contributions by other workers were mainly devoted to the determination of the
MOE of wood through measurements on beams with different sizes. Calculations
using FEM have given more evidence to the fact that improved theories give more
accurate estimates of the eigenfrequencies and the eigenmodes for the different
vibration modes of beams (Ohlson and Perstorper 1992).

Measurements were not restricted to only the MOE, although the knowledge of
its value could help estimating other quantities of interest. Burmetser (1965)
using short pulses at a single frequency measured the propagation velocity in
different wood species and the in¯uence of the morphological factors of wood on
its value. The velocity of propagation can also be measured from reading on the
screen of an oscilloscope the time separation between the traces of a stress wave at
positions with known space interval (Marra et al. 1966). Knowing then the density
of the material, the value of the MOE is a matter of a very simple calculation. The
use of stress waves has also been used in ®nding the correlation between MC and
MOE and by way to elaborate a tool for a possible sorting of green wood (Ross
and Pellerin 1988).

Damping is another important property in the study of viscoelastic materials.
Unfortunately, for wood, research is in need of more completeness in this ®eld for
a better understanding of the internal damping mechanisms and a more ef®cient
use of the material in construction. Fukada after extensive studies on 30 different
kinds of woods by vibrations in the middle audio frequency range found that the
MOE shows hardly any variation while damping exhibited different behaviour for
wood from broad-leaf trees than that from needle-leaf trees (Fukada 1950). Becker
has limited his studies on MC and temperature effects to a single variety of
hardwood at very low frequencies (Becker 1980).
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During the last years, research is gaining a little more ground in determining
the elastic properties of wood from beams with inhomogeneous shapes, different
from those of the conventional rectangular ones. Beginning from studies on logs
of wood, these studies are aiming to implement vibro-acoustic methods for
testing of wood in its full scale, i.e. to logs and standing trees. An important
®nding is that for some wood species the wave velocity measured on the surface
of a tapered log (conical shape with a low ¯aring) is almost the same as that in the
sapwood of the log (Kodama 1990). Another investigation has led to the cor-
rection of the resonance frequencies of logs in ¯exural vibrations due to the effect
of tapering (Sobue 1990).

Considering vibration measurements using impact excitation, its earliest im-
plementations were merely used for wave velocity determinations but quite in-
teresting applications which need a follow-up have also been reported in
investigating holes in small wooden pieces (Yanagiwara et al. 1986). The impact
technique has seen a noticeable emergence during the eighties and the reasons
behind this regeneration is due to its practicability in ®eld tests. Moreover, the
impacting instrument is a simple hammer which is both inexpensive and hand
portable. As an example, wood poles for electrical power supply and telecom-
munication cables are exposed to weather severities, attacks by insects and de-
gradation by rot fungi. These wooden units are thus in need of continuous
inspection of their working status and the investigation procedure may be done
but in-situ.

Numerical methods are for the time being the only relatively successful the-
oretical tool for the examination of the strength of wood poles (Nilson and
Pellicane 1993; Peabody and Wekesser 1994) and for studying the propagation of
stress waves in them (Bulleit and Falk 1985; Falk 1983) as well as in logs (Burrows
and Fridley 1988). A few patents exist already for the ®eld investigation of wood
poles, the testing method of some of which is built on the study of the pulse
response of the pole to a hammer stroke (Dunlop 1981). The transient method has
again been used with success in the determination of the MOE of wood from
blowing wood beams with a hammer. The excitation may be either transversal
(Haines et al. 1996; Kodama 1990; Ohlson and Perstorper 1992; Perstorper 1993;
Sobue 1986a; Tanaka et al. 1986) or longitudinal (Gerhards 1982; Haines et al.
1996; Ohlson and Perstorper 1992; Ross and Pellerin 1988; Sobue 1986b). In the
foregoing case, the studied quantity is often the velocity response but measure-
ments from sound radiation are also possible (Sobue 1986a,b). Some research has
also been done in progressing the understanding of stress wave propagation in
tree trunks. Investigations on relatively thick logs are promising (Kodama 1990;
Schad et al. 1996) and more work is to be done for the implementation of more
powerful methods in investigating defects in trees (Nanami et al. 1992a±c).

As decay changes noticeably the strength of wood, vibration measurements have
then been used to assess the degree of damage caused by fungi to wood through
measuring its MOE. However, most of the research in this ®eld is of a rather limited
extent and has mainly been con®ned to measurements on relatively small samples
of wood. Measurements on specimens of structural size and on standing trees have
been successful in determining decay only when this latter is at a so advanced stage
that the rot fungi have removed a big part of the inner material.

According to equation 8, the resonance frequencies of beams with simple
boundary conditions are in direct proportionality to the value of this modulus (or
more precisely to its square root) and inversely proportional to the material
density. At its early stages, decay reduces appreciably the strength of wood
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characterized by its MOE without too much affecting its mass. Furthermore,
decay has not in general been noticed to affect the wood's density. These three
facts together can be then used to assess decay in wooden members. An idea is
then to study the vibrations of beams, and the presence of decay in their material
ought to be simply translated by a lowering of their resonance frequencies. A
contribution supporting this principle is due to Wang et al. (1980) who injected a
decay fungus in small thin wood specimens and studied its effect under an in-
creasing number of incubation days. The resonance frequencies of the vibrating
samples were found to decrease more rapidly for more incubation days.

Some acoustical measurements on wood are also based on the equivalent
principle that vibrations propagate more slowly in decayed wood. Formulated in
other words, and according to the formula relating the longitudinal wave velocity
to the material properties in general:

m �
���
E

q

s
�9�

a wave takes a longer time to travel through a decayed sample of wood than
through a sound one. A technique for this purpose consisting of measuring the
time made by a wave to travel through a material is widely known as Through
Transmission Time Technique. Although early stages of decay reduce appreciably
the strength properties of wood (Wilcox 1968), it would however be dif®cult to
detect it in standing trees by through transmission methods. The reason is that
the incipiently rotten part of wood may extend only over a relatively small cross-
section area of the trunk and that usually tree stems have a diameter size such that
small time delays due to decay are very dif®cult to discern. This is the main
reason limiting the successfulness of this method for decay investigation in trees.

The idea of ®nding a correlation between decay severity and the travel time of
pulses in diametral direction in round poles and logs is not new in itself. Breeze
and Nilberg have tried to approach this problem theoretically by assuming that a
pulse circumvent a decayed region in its originally straight way along the di-
ameter of the circular cross section. To test the ef®cacy of their hypothesis, Breeze
and Nilberg drilled holes with different diameters along the axes of equal length
sections from the same log and they found indeed satisfactory agreement between
measurements and their predictions (Breeze and Nilberg 1971). Matteheck's re-
search group in Karlsruhe, Germany, working on the investigation of defects in
mostly valuable trees have recently introduced an instrument also based on the
this principle, the Metriguard Stress Wave Timer (Bechtel 1986; Bethge et al. 1996;
Mattheck and Bethge 1992; 1993). Two screws are fastened on diametrically op-
posite points of the trunk, one of which receives a hammer stroke and the other
one hosts a sensor, Fig. 5. From the knowledge of characteristic speed values
measured on healthy trees, the travel time of the stress pulse may give infor-
mation on the degree of decay deterioration within the trunk (the counter in the
apparatus measures time intervals in the order of the ls; for typical softwood
trees with a radial velocity of 1000 m/s, the relative measured velocity change
would be in the 1% range for 50 cm wide trunks). The same technique im-
plemented to wood logs showed that transmission times are also somewhat
sensitive to very knotty areas of wood (the transmission times were highly
varying) but for the method there is no clear cut answer whether the defect
elongating the pulse transmission time is due to decay or to knots. Note that here
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again that the test specimens were relatively wide logs, diameter larger than
76 cm, and that the decay degradation was visible as large voids within the logs
(Schad et al. 1996) (Fig. 6).

The use of acoustic pulses was also used on utility poles as a potential method
to assess the degree of decay advance in them. The pulse may be a stress wave
generated by the impact of a hard ball at the butt of the pole. The stress wave is
then sensed at a position remote enough from the impact position on the pole to
allow for a good visual separation of the head from the tail of the transient signal.
In this way, the velocity of the wave is deduced from the ratio of the travel
distance to the time made to accomplish it (Dunlop 1981; 1983). A later study has
also con®rmed the possibility of implementing this method to the ®eld moni-
toring of decay in utility poles (Ross et al. 1993).

Considered from another perspective, measurements with continuous peri-
odical vibrations on hardwood trees have also led to interesting ®ndings. The
tested trees had an average diameter at breast height (dbh) between 21 and 57 cm.
A sinusoidal vibration was induced in the tree stem and the response signal was
picked at different positions on it, all through screws after removing the bark. It
was found that the response of decayed stems was noticeably larger than that of
non-decayed ones whereas no deformation of the signal was noticed. Too low
frequencies (10 Hz) and too high frequencies (100 KHz) were much less effective

Fig. 5. Determination of signal travelling distance by means of the METRIGUARD Stress
Wave Timer (From Bethge et al. 1996)
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in determining decay than moderate frequencies (100 Hz, 1 KHz) (McCracken
and Vann 1983).

Experiments on logs of wood; Preliminary results and discussions
In this part the results of some vibrational measurements conducted on wood logs
of spruce are presented. The experiments were made using excitations of both
continuous and impact types and the quantity of interest is either vibration or
sound radiation sensed respectively via an accelerometer or a microphone. Two
logs were chosen for comparative studies purposes; one sound, or at least
showing no visible sign of fungal attack, and one with a marked stage of decay
advance. For this latter, the attacked part of the area on the cross-section of the
log was relatively small and concentrated at its center. The material though not
completely deteriorated showed no resistance to penetration by a sharp-edged
tool.

For all the measurements, information was extracted from the impulse re-
sponse measured on the logs either hanging vertically with springs or lying
horizontally on knife-edge supports. These supporting ways correspond to logs
with free-free boundary conditions. Regarding the continuous excitation mode,
the impulse response was processed according to the method illustrated in Fig. 2
and to this end a testing package employing Maximum Length Sequence signals
called MLSSA was used which comprises a circuit board and its accompanying
software. The excitation transducer was a BruÈel & Kjaer minishaker, type 4810
delivering an almost constant force spectrum up to around 18 KHz. The vibration
sensor was a BruÈel & Kjaer accelerometer, type 2374 with a resonance frequency
of 15 KHz, and the microphone a BruÈel & Kjaer condenser type 4165 having a ¯at
response up to around 10 KHz. The mountings for the different experimental
setups are illustrated in Fig. 7.

In the scope mode, the test measurement system was used as a usual oscillo-
scope. The measurements were con®ned to a relatively low frequency range be-
cause the important modes were localized in the frequency band 0±1500 Hz. First,
the sound log was investigated on the free-free supports for having an overview of

Stress
wave
received

Impact
applied

Fig. 6. Depiction of another sound wave transmission measurement system where reliable
results are on severely decayed wood stems, (From Schad et al. 1996)
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its frequency response and to check the degree of compatibility between theo-
retical predictions and measurements. The response both in the time and the
frequency domains is shown in Fig. 8.

Theoretically, a homogeneous rod with length l vibrating transversally with
both its ends free would have the nodes of its fundamental bending mode situated
at a distance 0.224 l from the edges. Although the experimental arrangement is
made for these ideal boundary conditions, it is unavoidable to excite other vi-
bration modes, not only of the bending type but of other types as well. Repeating
a same measurement using the excitation at a symmetric area but containing
naturally grown defects produced sometimes strong modal couplings (the sound
log had a diameter of about 10 cm and for this range, knots have a non-negligible
size). Hence, the material inhomogeneity leads to a more complicated interpre-
tation of the results but in general one should expect the beam to have its
strongest response at the ®rst free-free bending mode. This response is exhibited
in the peak denoted b1 in Fig. 8-a and its frequency is at about 270 Hz. The
approximate expression for the eigenfrequencies of the free-free, f-f, vibrating
beams is given by (Cremer and Heckl 1988):

f
f-f
� p

8

����
B

m

r
�2nÿ 1�2

l2 ; n: number of nodes �10�

with B � EI; E being the modulus of elasitcity, MOE, and I the sectional moment
of inertia which for a circular cylinder with radius a is expressed as:

I � pa4

2
�11�

In equation 10, m is the mass per unit length of the rod; it is expressed as
m � qpa2; q being the mass density of the material. So, for a homogeneous ®lled
circular cylinder, equation 10 may be reformulated for the f-f1 mode as:

Fig. 7. Mountings of different setups for measuring the vibration impulse response or
sound radiation response of wood logs. a Using a continuous excitation signal, b Using an
impact excitation signal
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The wood of the test log was not completely dry and its density was evaluated
simply by measuring the volume of the displaced water when a sample of known
weight was sunk in a container. One ®nds an expression of the MOE from the
frequency of the ®rst bending mode looking like:

E � 2q
8l2f

f-f1

9pa

� �2

�13�

and after setting all the data values one calculates a value of E�8.7 GPa. This value
is somehow lower than the average of the published data ranging between 8.3 and
13 GPa (see for instance TraÈfakta 1979). This is mainly due to the fact that these
data are often presented from measurements on clear dry specimens (maximum

Fig. 8. Velocity response
of a sound log of spruce
on free-free supports.
a Impulse response,
b Frequency spectrum
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of MC at 12%), while our specimen under test was a little knotty and had cracks
with various depths on its surface in addition to that it was still a little green (the
density of the material was about 754 kg/m3 which compared to the dry material
density of about 400 kg/m3 would give a moisture content of 88%). The afore-
mentioned defects affect negatively the strength of wood and yield always a lower
estimate of the MOE's value (see for instance (Bulleit and Falk 1985) or (Chui
1991)). Another observation made during the experiments is that drying affected
very much the measurements. In fact, the MOE is much dependent on the ma-
terial density q. The inverse proportionality of the eigenfrequencies f f-f on q
implicates that they increase for dryer material and this was actually observed by
the higher pitch of the tone when the logs were struck while drying. In the range
from 8 to 27%, the MOE value increases in a exponential manner as the MC
decreases (Schniewind 1989, p. 249), but above this range MC plays no role on the
MOE and the major effect on the resonance frequencies is attributed to material
density. Below the saturation point and as MC continues to diminish its value, E
increases and q decreases and this double processus according to equation 12
increases even more the value of the bending eigenfrequencies.

Returning to the frequency spectra, two other modes, bending also with a high
probability, namely b2 and b3, were also excited. These are expected to be re-
spectively the simply supported (s-s) mode corresponding to the vibrating part of
the log between the supports and the next f-f mode with a resonance frequency of
approximately ff-f2�2.7 á ff-f1. The resonance frequency of the former mode could
be evaluated from equation 10 but here one must take into account corrections
due to the non-negligible masses (one ®fth that of the log) by each of the sup-
ports. For the part of the log on the supports which represents 0.552 of its length,
the eigenfrequency of the s-s1 mode, fs-s1, would be 1.44ff-f1. This mode would be
situated at the notch b2 after the top b1, but the theory predicts that the extra
masses at the edges of the s-s rod would decrease the eigenfrequencies (Rayleigh
1945); this mode should then bene®ciate of a further investigation. The f-f2 mode
cannot have exactly its resonance frequency because the supports were not at
precisely its nodes, which normally are at 0.13 l from the edges of the rod and
similarly to the s-s1 mode, its frequency is reduced by the extra masses at the
ends. Moreover, the f-f2 mode was not responding with its full strength because
the force of the shaker was applied near one of its nodes (middle of the rod). It
will be seen later that despite that the excitation was as radial as possible and
aimed to set the rod into only transversal vibrations, other types of modes, the
tortional ones for instance, can also be set into motion and these latter blur
somehow the interpretations of the frequency spectra. However, the vibration
level of these modes is usually some tens of dBs lower than that of the important
b1 mode, hence their lesser importance. On the other hand, one notices that the
frequency response in Fig. 8-b raises afterwards strongly to reach a top at about
fo�1060 Hz. This frequency is too low to be that of the third bending f-f mode,
fo4, (ff-f-3�5.4 á fff1�1460 Hz in our case) and it is expected to be that of another
type. It is suggested that this mode is of an extentional type, i.e. that the log while
vibrating in this mode it does not hold a constant shape along its axis, and
particularly that this is the so-called ovaling mode. This mode which is also
sometimes called the n�2 mode, because it has 2 circumferential wavelengths or
similarly that it has 4 nodal generatrices on the cylinder, is very important in the
study of cylinders in vibration. The bending modes we have seen earlier cor-
respond to n�1 and two points diametrically positioned on the cylinder vibrate
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oppositely in phase whereas for the ovaling mode they move in phase. Fig. 9
shows the vibration behaviour of these two kinds of modes for a circular cylinder.

The ovaling mode is very sensitive to defects and this is very clearly shown by
the complete disappearence of its peak from the frequency response of the log
when both shaker and accelerometer are positioned in the middle of a knotty
area. In Fig. 10, one notices thus that the o-mode does not respond any more
when the excitation and the response are made at a defectuous site on the log.
Further, the exciting force and the sensing accelerometer were positioned near the
antinode of the f-f2 mode and as a result one notices its quite marked peak.

Another series of experiments was also made on the same log mainly for
studying its sound radiation, but this time the log being hanging vertically by
short and relatively stiff springs. In one experiment, an attempt was made to
excite other modes than the important f-f1. For this, the log was hit with a
hammer at the node of this latter mode and both the velocity and the radiated
sound were investigated. These are shown in Fig. 11.

From the spectrum in Fig. 11-a, although the amplitude of f-f1 mode is reduced
appreciably, another mode emerges strongly and this can be only the second
hinged-free mode h-f2 which has a frequency fh-f2

�2.2 á ff-f1
. The h-f1 mode has a

lower eigenfrequency than that of f-f1 (fh-f1
�0.68 ff-f1) but its node was at prox-

imity of that of the f-f1 (the distance between these nodes is 0.04 l and for our
1.3 m long log this corresponds to 5.2 cm). One notices also from the same ®gure
that the velocity increases rapidly towards lower frequencies. This behaviour is
due to the whole-body motion of the log. In fact as the frequency tends to zero,
the impedance of a rod of mass M tends to be that of a mass, i.e. Z! jxM: With
this in mind, the velocity is given by m � F/Z � F/jxM which for a constant force
increases with decreasing low frequencies. Regarding the spectrum of the radiated
sound, one sees that in this case the mode contributing most to the sound ®eld is
the presumed ovaling mode.

Similar measurements were carried on a thicker decayed log of spruce the
diameter of which was 1.44 that of the sound one. The frequency responses of the
velocity for respectively the free-free boundary conditions with continuous ex-
citation and for the vertical hanging setup with a hammer stroke at the node are
shown in Fig. 12. The general pattern of the frequency spectra for the sound log is
seen to be repeated in this case also. The resonance frequencies of the f-f1 mode
in this case is f¢f-f1�315 Hz and that of the o-mode is at about fo,decay �
1200 Hz. Using the value of the MOE E�8.7 GPa found for the sound log in
formula (12) would give normally f¢f-f1�433 Hz to be compared to the measured
value of 315 Hz which corresponds to a relative decrease of the MOE

Fig. 9. Modes of vibration of a circular cylinder. a Bending mode, b Ovaling mode170



D�MOE�=MOE � 47%. The lowering of the resonance frequency may be attrib-
uted to the hollowness of the cylinder which diminshes its cross-sectional inertia
I. But in this case, removing matter from the center of the cylinder diminishes
also its mass which by way increases the resonance frequency. Indeed, the net
result of these two effects leads in fact to a higher eigenfrequency. If one considers
then a hollow cylinder with an outer radius a and an inner radius b, then I would
instead of equation 11 be given by:

I � p
2
�a4 ÿ b4� �14�

Taking this expression into equation 10 and considering a mass per unit length
m equal to qp�a2 ÿ b2� yields for the new resonance frequency fhollow of the
hollow cylinder in terms of f rod for the rod:

Fig. 10. Frequency spectrum of the velocity of a sound log. a Shaker and accelerometer
away from knots, b Shaker and accelerometer at knots
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and which for small hollowness can be expressed by the approximation
fhollow � f rod�1� b2=2a2�.

On the other hand one knows that usually decay weakens wood without too
much removing of its material. We have also seen earlier that the decay process is
not in general associated with a noticeable change of wood density. From these
two observations one can then conclude that the decayed matter in the log may be
modelled to an acceptable approximation to a substance with a lower density q0
(less mass occupying the same volume) than that of the wood hosting it, but
contributing in nothing to its strength. This leads then to a new substitute of
equation 15, namely:

Fig. 11. Frequency response of a sound log hanging vertically and hit by a hammer at the
node of the f-f1 mode. a Velocity, b Radiated sound
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where a � b/a. The curve b/a vs q0=q is plotted in Fig. 13. One notices that the
curve is almost linear and that for a very light inner material, the cylinder tends to
be very thin. At an equal density matter, the thickness of the stiffer outer part of
the cylinder has to be 1/5 of its mean radius. This seems at ®rst judgement to be a
too high value but in reality not impossible to be observed in practice and which
could be proved only by more precautionary studies.

Perhaps a more realistic model is to assume that the decayed part of the wood
retains its natural density whilst its strength reduces considerably. We have seen
earlier that a 50% loss of strength could be associated with only 1% loss in weight.

Fig. 12. Frequency spectra of the velocity for a decayed log of spruce. a Free-free sup-
porting conditions, b Vertically hanging with a hammer blow at the node of the f-f1 mode
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Hence, if one supposes that the decayed part of the material has dimished to a
value E¢ much smaller than E, then one can write instead of equation 16:

f
decayed

� f
sound

����������������������������������
1ÿ a4�1ÿ E0=E�

q
�17�

where again a � b/a. Equation 17 is valid only for E0=E � �f
decayed

=f
sound
�2 otherwise

the outer diameter of the cylinder might be larger than its inner one. The curve a
as a function of E0=E is plotted in Fig. 14.

This model has again two limitations; one is that for absolutely weak inner
material, the outer stiffer part has to be vanishingly thin and the second is that the
relative strength of the materials is limited by the squared ratio of the frequencies
of respectively the decayed and sound logs. A combination of both proposed
models with equal relative densities and strengths of the materials would give a
composite cylinder the thickness of the outer part of which would be only 7% of
its radius as shown in Fig. 15. The corresponding relative densities and strengths
are at around 0.38.

Fig. 13. Ratio of the
diameters of the inner
lighter to the outer heavier
equally strong parts of a
composite ®nite length
cylinder as a function of
the ratio of their densities
to satisfy equation 16

Fig. 14. Ratio of the
diameters of the inner
weaker part to the outer
stronger part of a constant
density ®nite length cylinder
as function of the ratio of
their strengths to satisfy
equation 17
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It would of course be better to elaborate models which could give a better
representative picture of the reality, but this would require the knowledge, at least
approximately, of the distribution of the mass and the strength in the decayed
stem material of the log as a function of the distance from its pith. The change in
mass density and strength is unlikely to happen in an abrupt manner through
passing from the decayed to the non-decayed parts of a rotten tree trunk. Un-
fortunately, the kind of information describing the gradual change of these
properties is lacking, to the best of our knowledge, from the wood research
literature.

Returning to the decayed log, the spectrum of its sound radiation was mea-
sured when it was struck by a hammer in its middle and compared to that of the
sound log. These two spectra are presented in Fig. 16.

Commenting on these two curves, one sees that in both of them, the peak of the
f-f1 mode is very pronounced which is also somehow valid for the ovaling mode.
In between these two resonance frequencies, the spectrum of the decayed log is
smoother than that of the sound one. This could be due to the lesser excitation of
the transversal modes in the decayed log which anyhow would be more damped
by the decay than in the case of the sound log. For the decayed log, the hammer
blow seems to initiate the action of only the two aforementioned important
modes.

Another more important observation made on the response of the logs to the
hammer impact is the presence of an amplitude modulation of their impulse
responses which is displayed next in the time domain counterpart of the spectra
above. The period of the amplitude modulation was a little longer for the sound log
than for the decayed one, 64 ms against 57 ms, corresponding respectively to the
frequencies of approximately 15 Hz and 17 Hz, i.e. at the lower limit of the human
hearing sensitivity. This modulation results from the beating of two nearby tones
at the major resonance frequency. The resulting warbling tone was clearly heard in
the anechoic chamber from the sound log at a distance of a few decimeters from it.
For the time being, no clear explanation can be given to this mode splitting
phenomenon and this may constitute the subject of a later investigation. The
possibility of implicating the cause to the hinging system is for sure to be dis-
carded. The springs constituting this latter were stiff enough to make the lightest
log-springs system vibrate at about 270 Hz in addition to the well known fact that

Fig. 15. Combination of
the models formulated by
equations 16 and 17 for
equal relative densities and
strengths of the constituant
materials of the composite
cylinder
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the axial vibration of the log could generate but a negligible amount of sound in the
air. Furthermore, and as it should normally be expected, the impulse response of
the decayed log was more damped than that of the sound log.

To prove the unsymmetry caused by the presence of defects in the logs, an
experiment was also made with the aim to set into motion the tortional modes.
The spectra at a position on the log (the decayed one was chosen for the re-
maining experiments) between two diametrically opposite excitations applied
tangentially on the log are shown in Fig. 18.

One notes that one cannot avoid exciting the fundamental free-free bending
mode in either excitation, which actually was not hit when both excitations acted
simultaneously, whilst the ovaling mode is undetectable.

For the ovaling mode which in our opinion is important to study, two more
measurements were made in an attempt to prove its existence at the earlier

Fig. 16. Spectrum of the sound radiated by a log when hit at midst by a hammer. a Sound
log, b Decayed log
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presumed frequency. From Fig. 9-b one sees that on the elliptical cross-section of
the cylinder in the ovaling motion, two points situated on adjacent apexes move
in phase opposition. That is when one point is at its maximum displacement, the
other one is at its minimum and vice-versa. In one experiment made of two parts,
the phases at two such positions were measured and then these were substracted
from each other. This phase difference is shown in Fig. 19-a from which one reads
that the peak of height 180° is at a frequency of about 1050 Hz, somehow lower
than the previously reported value and possibly due to the less precise transducer
positioning.

On the average, the phase curve oscillates around 0°. The sharp peaks ex-
tending over large phase spans are a matter of graphical presentation which
displays the wrapped phase. Actually these peaks are the most favourable for the
in-phase motions as their jump is between 0 and +/)360°.

Back again to Fig. 9-a, one sees that the two lateral sides of a rod in bending
vibration move always in opposition of phase. Hence, to set the cylindrical rod

Fig. 17. Impulse response
of a log struck with a
hammer. a sound log,
b Decayed log
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into extensional motion and eliminate the onset of the bending modes, it is
necessary to apply on one of its diametral lines two forces equal in strength and
opposite in direction. The spectrum resulting from such excitation is shown in
Fig. 19b. One notes that the f-f1 mode still exhibits a remainder of its strength
because the slightest misplacement or misalignment of the exciting forces could
set it into action.

Conclusions
In this paper, a review has been made of the different vibrational and acoustical
methods used for non-destructive testing of solid structures in general with
emphasis on an ef®cient method for evaluating their impulse responses. The state

Fig. 18. Proving the impairement caused by defects in logs in tortional vibration. a Tan-
gential force excitation at one position, b Tangential force excitation in opposite direction
and at diametrally opposite position
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of the art for implementing these techniques to detect decay in wood with pos-
sible applications on standing trees has also been reviewed. Some experiments on
logs of wood have led to interesting observations. The experimental part of this
work was made on logs of spruce with the aim to test the usability of vibrational
testing to full-scale trees. In conclusion of these preliminary investigations it may
be asserted that the vibrational response of wood logs to continuous or impact
excitation is not restricted to only the bending modes. Other modes of the tort-
ional and extentional types contribute also to their vibrational responses. Re-
garding the sound radiation from wood logs, the so-called ovaling mode ought, in
our opinion, to bene®ciate of a more in-depth investigation of its own. The
reasons motivating this are exposed shortly later in the text.

Fig. 19. Experiments for possibly detecting the presence of the ovaling mode. a Phase
difference between two positions at 90° from each other, b Frequency response for exci-
tation by two opposite equally strong forces on diametrally opposite points
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The impulse responses of the sound radiation from hammer impacted logs
showed some unexpected features. An amplitude modulation of the impulse re-
sponse was found which was more intense in the case of sound logs. The period of
this modulation was longer for the decayed log than for the sound one. The
corresponding frequency which is equal to the difference between the split fre-
quencies of the ®rst bending mode was situated near the infrasonic domain.

To use the vibrational methods to study the motion of a full-scale tree, a good
mechanical model for this latter is necessary. Some models for the simulation of
vibrating trees have been proposed earlier (Yung and Fridley 1975) and research
is still on its way for the understanding of tree vibrations and for the realization of
simpler and better performing simulation models (Burrows and Fridley 1988;
Fournier et al. 1993; Matheck 1990, 1992). To start with the simplest possible
model for a motion normal to its axis, a tree can be approximated by a straight
®nite length beam that is clamped at one end (at the butt of the tree). It has been
proved from studies on among others ®r trees that branches attenuate strongly
sound impulses. This could invite to assimilate a tree to a semi-in®nite rod.
However, one knows by experience that the whole-body response of straight trees
to wind induced motion is usually characterized by a relatively slow periodical
swaying. Furthermore, the eigenfrequencies of a rod in bending motion are no
longer easily discernible from each other when the rod extends more and more in
size. So, one concludes that the tree branches' attenuation can be ef®cient only in
the case of longitudinal sound propagation, i.e. along the tree axis.

An improvement to the simple rod proposition is to model a tree as the
combination of a clamped rod (the stem of the tree) and an extra mass (the weight
of the canopy) attached to it at the centre of gravity of the tree crown, Fig. 20.
Some interesting simple shapes have already been reviewed for this kind of
modelization (Yanagiwara et al. 1986).

A more realistic shape of the stem of the tree and its extention may be in the
form of a conical rod, though the taper of the stem is known to vary with height in
a more complicated manner than in the case of a simple cone (Schniewind 1989).
The eigenfrequency of the fundamental mode of a clamped-free conical rod is
given by:
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and is 2.48 that of an equally long uniform circular rod (Timoshenko et al.
1974). The In¯uence of an added mass to the rod near its free extremity is
expected to reduce this frequency (Rayleigh 1945), the amount of which is to be
determined.

Using equation 18 for a typical 15 m high cone of spruce, 60 cm wide at the
butt would result in a fundamental frequency of around 10 Hz. The frequencies of
the next two modes are approximately twice and four times this value, thereafter
the eigenfrequencies become more and more sparsely distributed. These latter are
to be reduced further after addition of the tree crown's weight. One sees thus that
already at the early part of the frequency spectrum, the vibration pattern of this
simple model is enough complicated. The possibility of neglecting the effect of the
modes higher than the fundamental due to some kind of attenuation cannot be
discarded at this stage but only experiment can con®rm this statement.
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Viewed from a different perspective, the impact response of the tree trunk to a
hammer stroke may be better considered as a local phenomenon. The tree trunk
may in fact be regarded as a uniform cylinder, at least at comparatively short
distances from either side of the hammer stroke's site. The study of the different
modes involved in this impact response ought to have a special focus on the
extensional ones. The existence of the ovaling mode has been predicted earlier for
solid shells and its study is the subject of extensive research worldwide for the
reduction of noise emission from the stators of electrical machines (Verma et al.
1987). In this latter case which concerns quite thin and short circular cylinders,
the ovaling mode manifests itself as the ®rst in the frequency response spectrum,
hence its importance. A recent quite interesting study includes the ovaling mode
among the axial length-independent modes and its frequency is dependent only
upon the shell's radial dimensions (Wang and Williams 1996). It is worth noting

Vibration amplitude Vibration phase

a                                                                              b

Fig. 21. Visualizing a log vibrating in the ovaling mode with a TV holography system
(From Skatter 1996). a Amplitude, b Phase

Fig. 20. Simple modelling of a tree vibrating system as the combination of a clamped
conical rod and a concentrated mass
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that the majority, if not all, of the published material in this respect is devoted to
numerical investigations, simply because exact closed form solutions are im-
possible to formulate to this apparently simple problem. For the case of wood, it
seems that the presence of the ovaling mode among the vibration modes of logs
has been con®rmed only lately, Fig. 21. This happened accidentally while Skatter
was investigating for the sawmilling industry the potentialities of a new system for
the optical imaging of vibrating surfaces (Skatter 1996).
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