
Journal of Sound and Vibration (1999) 219(5), 837–857
Article No. jsvi.1998.1892, available online at http://www.idealibrary.com on

SCATTERING OF A SPHERICAL WAVE BY A
THIN HARD STRIP

D. O

Department of Engineering Acoustics, Lund Institute of Technology,
P.O. Box 118, S-221 00, Lund, Sweden

(Received 20 March 1998, and in final form 4 August 1998)

This paper is concerned with a theoretical solution to the problem of scattering
of a spherical wave by a strip. The strip is infinitely thin, infinite in length and
of width 2a. The problem is first brought into the wave space through a spatial
Fourier transform of the wave equation and of the boundary conditions on the
strip. The Fourier transform is taken with respect to the co-ordinate axis parallel
to the edges of the strip. Using the boundary conditions on the strip leads to an
integral equation of the first kind, the unknown of which is the discontinuous
potential jump across the strip. This latter is expanded into some suitable
functions and the coefficients of the series expansion are thereafter determined
from an infinite system of equations. The system’s matrix is found to be mainly
diagonal and tests on the stability of the numerical calculations suggest the
significant number of equations in the system be limited to approximately ka+5,
with k being the wavenumber. Finally, after solving the system of equations and
going back to the scattered field, the expression of this latter is made from an
infinite series over some infinite double integrals whose approximate evaluation
is made with the help of the two-dimensional stationary phase method. This
treatment corresponds to the far field case. A further consideration of the right
side of the system of equations leads to an improved value of the scattered field.
Comparisons are made to an approximated prediction of the scattered field by
using the Biot and Tolstoy exact theory of diffraction of a spherical wave by a
hard wedge. The implementation of this approach to the strip requires the further
consideration of the multiple diffraction between its edges for improving the
calculated value of the scattered field. Some numerical examples are treated with
discussions on their results.
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1. INTRODUCTION

The study of the scattering of waves by a strip has attracted the interest of
theoreticians and experimenters for almost two centuries. Indeed, in problems of
wave interaction with thin scatterers, the case of the strip is given special attention
because it is considered as the simplest one after that of the half plane. This is due
not only to the relatively simple shape of the strip but also because in studying
for instance the problems of noise shielding by simple barriers, these latter are
often, if not always, modelled as hard thin strips standing on the ground.
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Moreover, the important principle of Babinet stipulates that the complementary
problems of scattering by a disk and of that of a similar aperture in an infinite
plane have equivalent solutions. In this latter case, the scattering problem of a slit
in a screen can be formulated as that of two half planes in mutual interaction and
for such approaches the strip is the simplest case to consider [1]. Unfortunately,
and although extensive studies stretching in time over many decades have been
made, none of the attempts to find exact solutions to the problem of the strip has
been successful up to date in finding elegant closed form solutions like those
elaborated for the half plane [2]. It may be of interest to note also that of the many
reported results of studies in this spirit, one finds that most of them treat the case
of plane or cylindrical wave incidence, thus making the problem easily amenable
to a two dimensional analysis. However, in practical problems of sound scattering
by thin hard objects and due to the relatively long wavelengths of sound, low
frequencies are a major source of trouble and considering the more general case
of the spherical source is therefore of prime importance.

Potential theory has been used earlier for solving either interior problems or
problems of wave interaction with plane obstacles delimited by sharp edges [3, 4].
In this latter case, the field scattered by the obstacle may be represented as the
potential of a single or a double layer on the scattering object, the density of which
is to be determined through applying the pertaining boundary conditions on the
scatterer. This approach is more reliable for this kind of problem, as its
formulation is exact. However, for the case of a hard obstacle, which is of most
interest in acoustics, the integral equation so obtained for the layer density, a
Fredholm equation of the first kind, may be correctly formulated only through
resorting to the theory of distributions. The solution of the integral equations so
obtained requires also the careful use of some special techniques [4–6]. It could
be of some interest to note that the problem of noise shadowing by a thin screen
on a hard plane has also been formulated by a potential theory approach. The
solution to this problem has given an excellent agreement between theoretically
predicted and experimentally measured values of the scattered field [7].

In this paper, the problem of scattering of a spherical wave by a thin hard strip
is approached through the solution of an integral equation in the potential jump
across the thin strip. A similar approach has been successfully used by Boström
to solve the problem of plane wave scattering by a thin hard rectangle [8], and by
Boström and Peterson for the case of a thin hard circular disk [9] at the separation
between two fluids. It is found that with relatively light computing efforts, the
solution presented here for the problem of the strip in the field of a spherical wave
is very satisfactory for most engineering purposes. In section 2 of this paper the
problem is formulated and in section 3 the final formulation is given for the
integral equation for the potential jump which is the unknown quantity. Section
4 presents the solution of the integral equation with some details on the diverse
approximations and the improvements caused to the value of the scattered field.
Subsequently, in section 5 an approximate solution is formulated for the field
scattering by the strip in terms of an exact solution for the half plane by using
the generalized Biot–Tolstoy theory of spherical wave diffraction by a hard wedge.
The single diffraction approach applied to the edges of the strip is then
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supplemented by a multi-diffraction algorithm to take into account the mutual
interaction of the strip edges. Finally, section 6 is devoted to some numerical
examples with discussions on their results.

2. FORMULATION OF THE PROBLEM

Consider the thin hard strip in the x0z plane, with its edges parallel to the z-axis
and at x=2a; see Figure 1. The point sound source with co-ordinates S(xs , ys , 0)
is assumed to have the time harmonic dependence e−ivt and the observation point
is R(x, y, z). The sound speed in the fluid is c and k is the wavenumber.

The problem is then to solve the Helmholtz wave equation:

92u+ k2u=0 (1)

subject to the Neumann boundary conditions on the hard strip. Hence, if u denotes
the potential scattered by the strip, i.e., the potential which is the contribution to
the total field due to the presence of the strip, then

1u/1y=−1ui/1y for =x=E a and y=0, (2)

where ui is the spherical incident wave:

ui =eikR/R, R=[(x− xs )2 + (y− ys )2 + z2]1/2. (3)

The scattering problem as formulated here must also be complemented by some
radiation conditions at infinity to ensure the uniqueness of the solution.

3. INTEGRAL EQUATION FOR THE SCATTERING PROBLEM

To solve the scattering problem, equations (1) and (2) are brought into the
Fourier domain and an appropriate choice is made for the expression of the
Fourier transformed scattered field ū. First, it is necessary to give a definition of
the Fourier transform and its inverse:

ū=
1

z2p g
+a

−a

u e−ipz dz \ u=
1

z2p g
a

−a

ū eipz dp. (4)

Figure 1. Geometry for the problem of scattering of a spherical wave by a thin strip.
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Applying the direct transform to equations (1) and (2) gives

12ū/1x2 + 12ū/1y2 + (k2 − p2)ū=0, (5)

1ū
1y

=−
1

1y
1

z2p g
a

−a

eikR

R
e−ipz dz, =x=E a, y=0. (6)

In this last equation, the integration is carried out by using

g
a

−a

eikR

R
e−ipz dz=ipH(1)

0 (R�zk2 − p2), (7)

where H(1)
0 is the Hankel function of the first kind and of zero order and

R� =[(x− xs )2 + (y− ys )2]1/2. (8)

It is assumed that the solution of equation (5) can be put into the form

ū=
sgn (y)

z2p g
a

−a

f(q, p) ei(qx+ h=y=) dq, (9)

with

h=zk2 − q2 − p2, Im (h)e 0. (10)

The form of the scattered field as given in equations (9) and (10) ensures that it
satisfies both the wave equation and the radiation condition. Moreover, the
continuity of its y-gradient is fulfilled everywhere in space.

For y=0, the potential ū is continuous away from the strip and makes a so
far unknown jump Dū across it:

ūy=0+ − ūy=0− =X2
p g

a

−a

f(q, p) eiqx dq=6Dū,
0,

=x=E a
=x=q a7. (11)

Inverse Fourier transforming equation (11) gives then

f(q, p)=
1

2z2p g
a

−a

Dū e−iqx dx. (12)

The continuity of the y-derivative of the field across the strip can be formulated
as

1ū
1y by=0

=
1

z2p g
a

−a

f(q, p)ih eiqx dq, (13)
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which, when used in equation (6) along with the property (7), leads to an integral
equation for the unknown function f(q, p):

g
a

−a

f(q, p)h eiqx dq=−p
1

1y
H(1)

0 (R�zk2 − p2)=y=0, =x=E a, (14)

or if one is interested in solving for the Fourier transformed potential jump Dū,

1
(2p)3/2 g

a

−a g
a

−a

Dū(x', p) e−iqx' dx'h(q, p) eiqx dq=−
1

1y
H(1)

0 (R�zk2 − p2)=y=0,

=x=E a. (15)

4. SOLUTION OF THE INTEGRAL EQUATION

To solve the integral equation (15), Dū may be expanded in some suitable way.
First, one can introduce the Chebychev ‘‘polynomials’’ 8n (x) which are defined
by

8n (x)=6 cos (n arcsin x)
i sin (n arcsin x)

n=1, 3, 5, . . .
n=2, 4, 6, . . .7 (16)

and expand Dū in them: i.e.,

Dū= s
a

n=1

an (p)8n0xa1. (17)

Actually, the functions 8n are not polynomials but they are related to the true
Chebychev polynomials Tn and Un . The choice of the expansion in the 8n s is made
in order to describe correctly the square root behaviour of the surface field at the
edges of the scattering plane strip: that is, with reference to Figure 1, the form
[1− (x/a)2]1/2 for the surface potential is preserved as x:a [10]. Hence, with this
form of the potential jump, it is possible to perform analytically the inner integrals
in equation (15) through using (see the Appendix)

g
a

−a

8n0xa1 e−iqx dx=
np

q
Jn (qa), (18)

in which Jn denotes the Bessel function of the first kind and of order n. Equation
(12) can then be written again as

f(q, p)=
1

2z2p g
a

−a

Dū e−iqx dx=
1
2qXp

2
s
a

n=1

nan (p)Jn (qa), (19)
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and setting the expansion (17) for Dū in equation (15), whereafter use is made of
the property (18) leads to

p

(2p)3/2 s
a

n=1

nan (p) g
a

−a

h
q

Jn (qa) eiqx dq=−
1

1y
H(1)

0 (R�zk2 − p2)=y=0, =x=E a.

(20)

Next, a multiplication of both sides of equation (20) by 8m (x/a) and an integration
from −a to a, with use of (see the Appendix)

g
a

−a

8m0xa1 eiqx dx=(−1)m−1 mp

q
Jm (qa), (21)

permits one to express equation (20) in a new form, namely

(−1)m m
2 Xp

2
s
a

n=1

nan (p) g
a

−a

h
q2 Jn (qa) Jm (qa) dq

=g
a

−a

8m0xa1 1

1y
H(1)

0 (R�zk2 − p2)=y=0 dx, =x=E a. (22)

Note that h is dependent on q through equation (10).
By varying m in equation (22), one gets an infinite system of linear equations

to be solved,

s
a

n=1

Qnman =Tm 1EmEa, (23)

where

Qnm =(−1)m nm
2 Xp

2 g
a

−a

zk2 − q2 − p2

q2 Jn (qa)Jm (qa) dq (24)

and

Tm =g
a

−a

8m0xa1 1

1y
H1

0(R�zk2 − p2)=y=0 dx. (25)

The scattering problem is then solved by first calculating the expansion coefficients
an from equation (23), then setting them into the expression for the potential jump
in equation (17), which in turn gives form to the function f(q, p) in equation (12).
Thereafter, the Fourier transformed scattered field ū is evaluated according to



     843

equation (9), which lastly leads to the scattered field u through equation (4) or,
all operations having been made,

u=
sgn (y)

4z2p
s
a

n=1

n g
a

−a g
a

−a

an (p)
Jn (qa)

q
ei(qx+ h=y=+ pz) dq dp. (26)

The integral in equation (24) is zero for m+ n equal to an odd integer whereas
for m+ n even, Qnm can be evaluated according to

Qnm =(−1)mnmXp

2
[I1 + iI2]. (27)

I1 is given by [11]

I1 =g
zk2 − p2

0

z(k2 − p2)− q2

q2 Jn (qa)Jm (qa) dq

= 1
2(azk2 − p2/2)m+ nG(3/2)G([n+m−1]/2)/G([m+ n+2]/2)G(1+m)G(1+ n)

× 3F4([n+m−1]/2, [n+m+1]/2, (n+m)/2+1; m+1, n+m+1,

× n+1; −a2(k2 − p2)), (28)

where G is the Gamma function and iFj(a1, . . . , ai ; b1, . . . , bj , z) is the generalized
hypergeometric function of order (i, j) and argument z. I2 is given by [12]:

I2 =g
a

zk2 − p2

zq2 − (k2 − p2)
q2 Jn (qa)Jm (qa) dq=−g

zk2 − p2

0

z(k2 − p2)− q2

q2

× $Jq(qa)YQ(qa)+
dnm

np% dq−
dnm

2n
, (29)

where Q, q=min, max (n, m), Y the Bessel function of the second kind, and d
is the Kronecker symbol.

Taking n=0 in the relation

x dH1
n (x)/dx− nH(1)

n (x)=−xH(1)
n+1(x) (30)

into the expression for Tm in equation (25) gives

Tm = yszk2 − p2 g
a

−a

8m0xa1 H(1)
1 (z(k2 − p2)[(x− xs )2 + y2

s ])

z(x− xs )2 + y2
s

dx, (31)

where one finds the Hankel function of the first kind and first order H(1)
1 = J1 + iY1.

The integration operation in this last equation can be performed numerically
without any major difficulties, provided the co-ordinates of the source xs and ys
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do not make the argument of the Hankel function equal to zero, to avoid the
singularity of Y1(0). This can be achieved by choosing, for instance, ys not equal
to zero.

The infinite system of equations in equation (23) must of course be truncated
at some nmax, mmax and this raises questions about the convergence of the field in
equation (26). The convergence has been tested for typical experimental
parameters in practical cases and it was found that the dimension of the system
of equations was somehow frequency dependent. To achieve a satisfactory stability
of the calculated scattered field, the number of equations was estimated to be no
less than about ka+5.

However, it is a difficult task, if possible at all, to determine an exact, closed
form of the scattered field u due to the fact that the different coefficients an could
be calculated for specific values of the parameter p, which according to equation
(4) may take all possible real values. Thus, one finds again all these values of p
to be taken once more into account in the expression for h in equation (10) in order
to be able to calculate the integral in equation (26). So, to solve this problem as
efficiently as possible, one should normally assign the values of the an s by solving
the system in equation (23) for all the required values of p and then insert in
equation (26) these an values corresponding to each value of p for which they were
determined. Here, the integration is to be performed relative to the variable q,
whereafter the second integration is to be replaced by some process of convergence
acceleration of the summation over the limited number of the q-integrations
resulting from the limited number of the p values.

On the other hand, and for practical considerations, it is a good first
approximation to consider the far field case, namely the case where the field point
is so far from the strip that the phase of the integrand in equation (26) oscillates
rapidly. In this case the double integration may be performed approximately by
means of the two-dimensional stationary phase method. This technique states that
if in the integral

I=gg
+a

−a

A(x, y) eic(x, y) dx dy (32)

c:a, then [13]

I3 (2pA(x0, y0)/z=J0=) ei(c(x0, y0)+ ep/2), (33)

where x0 and y0 are the co-ordinates of the stationary point of the phase and,
e=−1, 0, +1 depending on whether the stationary point is a maximum, saddle
point or a minimum. J0 is the Jacobian at the stationary point (not to be confused
with the Bessel function) and is defined by:

J0 = (12c/1x2) 12c/1y2 − (12c/1x 1y)2, (x, y)= (x0, y0). (34)

If one uses spherical co-ordinates for x, y and z,

x= r sin u cos f, y= r sin u sin f, z= r cos u, (35)
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then the phase of the exponential term in equation (26) may be expressed as

c= r(q sin u cos f+ =sin u sin f=zk2 − q2 − p2 + p cos u). (36)

The co-ordinates of the stationary phase point are the values p0 and q0 for p and
q making the respective derivatives of the phase c change sign: i.e.,

1c/1q=0c sin u cos f− q=sin u sin f=/zk2 − q2 − p2 =0, (37.1)

1c/1p=0c cos u− p=sin u sin f=/zk2 − q2 − p2 =0. (37.2)

If one considers the case where yE 0, equations (37) lead to

p0 = k cos u, q0 = k sin u cos f, (38)

which when inserted in equation (34) permits one to evaluate the Jacobian as

J0 =1/(rk sin u sin f)2. (39)

The nature of the stationary point is determined from checking at the same time
the sign of both the Jacobian and that of the phase’s second derivative (12c/1q2)
at this point. In the present case the stationary point is a maximum and the value
of e in equation (33) is therefore e=−1. The same results are found to apply as
well for ye 0.

The coefficients Tm in equation (25) constituting the right hand side of the system
of equations (23) can also be calculated approximately for large arguments of the
Hankel function in equation (31). In fact, upon noting that [14]

H(1)
1 (x)
x:a

3z(2/px) ei(x−3p/4), (40)

Tm becomes approximately given by

Tm 3−(1+ i)ys0k2 − p2

p2 1
1/4

g
a

−a

8m0xa1 eiz(k2 − p2)[r2s −2xxs + x2]

(r2
s + x2 −2xxs )3/4 dx, (41)

where r2
s = x2

s + y2
s . If one further assumes in the integrand that r2

s �x2, 2xxs in
both the argument of the exponential and in the denominator, a condition which
could be satisfied for instance for a point source facing the mid-line of the strip,
far away from it, then

Tm 3−(1+ i)yS0k2 − p2

p2r6
S 1

1/4

g
a

−a

8m0xa1 eizk2 − p2rS (1− xxS /r2S ) dx, (42)

which through using equation (18) gives

Tm 3−(1+ i)(mys /xs )zp/rszk2 − p2Jm (zk2 − p2[xsa/rs ]) eirszk2 − p2. (43)

In this case the term eirszk2 − p2 in the coefficients Tm will have an effect on the
values of the an s, and thereupon on the value of the scattered field in equation
(26). Still, the two-dimensional stationary phase method can be applied to
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the double integration, but here one has the phase of the exponential function c

given by

c= qx+zk2 − q2 − p2=y=+ pz+ rszk2 − p2. (44)

Here, the determination of the co-ordinates of the stationary phase point may be
a little more tedious than in the previous case and the numerical solution for p0

and q0 making 1c/1p= 1c/1q=0 is sometimes justified, whereafter these values
are used in the expression of the Jacobian to determine the nature of the stationary
point. In the present case, the calculations are relatively easy and the new
co-ordinates of the stationary point for the phase are

p0 =
kz

zr2
s + r2 +2rszx2 + y2

, q0 =
kx

zx2 + y2

rs +zx2 + y2

zr2
s + r2 +2rszx2 + y2

. (45)

5. APPROXIMATE SOLUTION USING THE BIOT–TOLSTOY THEORY
OF DIFFRACTION

Most of the solutions to the problems of scattering by a strip have been given
for the two-dimensional case. Examples of such approaches are by use of the
Wiener–Hopf technique or by means of field expansions in the Mathieu functions
[15]. Another approach to such problems has also been recently presented for the
case of a normally incident plane wave on the hard strip [16]. This solution is a
special application, applied originally to the case of the truncated wedge and
consists of combining the exact solution to the problem of diffraction by a vertex
with an algorithm for taking into account the multiple diffraction between the two
vertices.

In this section, another approach is used which basically is intended for the cases
dealing with semi-infinite wedges, but at the same time treats the more general case
of spherical wave incidence. This theory gives solutions in the time domain and
these are valid for all frequencies [17]. The shortcomings in implementing this
method to the strip arise as in the aforementioned case of the truncated wedge,
essentially from considering the two edges of the strip as those of semi-infinite half
planes. However, taking into consideration the multiple diffraction between the
edges partly remedies this problem. Moreover, the order of the multiple diffraction
is hard to extend above double diffraction. In reference [16], the results of some
calculations on the scattering by a hard strip have been presented. There, the field
point was considered to be in the shadow zone of the strip and comparisons were
made to the results presented in reference [18]. Thus consider only this latter
approach is considered here.

Biot and Tolstoy more than four decades ago presented a new solution to the
problem of spherical wave diffraction by a hard wedge [17]. The attractiveness of
this theory, subsequently referred to as the B–T theory, is that its formulation is
in the time domain and that it uses relatively simple mathematics for the expression
of the diffracted field. Consider, as in Figure 2, an infinite hard wedge with angle
uw in a fluid with density r and where the sound speed is c.
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Figure 2. Geometry for the diffraction of a spherical wave by a hard wedge.

If at the point S is emitted an instantaneous pulse of pressure pd ,

pd =(rS/4pR) d(t−R/c), (46)

where S is the strength of the source and R the distance range to the receiver, then,
at a later time t0, (being the least travel time from the source to the receiver via
the crest of the wedge) given by

t0 = [(r+ r0)2 + z2]1/2/c, (47)

the receiver R would detect a disturbance pd (t) originating from the tip of the
wedge,

pd (t)= (−Src/4puw ){b}(rr0 sinh (Y))−1 exp(−pY/uw ), (48)

in which b is the sum of terms

b=sin [(p/uw )(p2 u2 u0)]{1−2 exp(−pY/uw ) cos [(p/uw )(p2 u2 u0)]

+ exp(−2pY/uw )}−1, (49)

and

Y=arccosh ([c2t2 − (r2 + r2
0 + z2)]/2rr0). (50)

For the half plane, uw =2p and equation (48) becomes, for the important case of
the half plane with z=0 [19, 20],

pd (t)=
−Sr

4p2c Xt2
+ − t2

−

t2 − t2
+ 6 cos2

t2 − t2
+ + (t2

+ − t2
−) cos2 27+

, (51)

where t2 =(r2 r0)/c and cos2=cos [(u2 u0)/2]. For notational convenience, the
term { }+ in equation (51) is the sum of two terms corresponding to the different
signs in the argument of the trigonometric function. It may also be noted that in
the case where the source and the receiver lie in the same plane normal to the edge
of the half plane one has t+ = t0. To date, the exact Fourier transform of the time
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domain expression in equation (48) is not available and so one must resort to
numerical techniques.

An application of the solution of the wedge problem to the strip of Figure 1
would require generating the strip from a truncated wedge of top width 2a and
then letting its angles go to 2p. This primary solution may be improved by
considering the interaction between the edges of the strip through adding a double
diffraction algorithm to the single diffraction solution. When the source
illuminates one edge, it in a way stimulates an infinite number of secondary
sources, SS’s, on the diffracting edge, which in their turn emit their wavelets
to the receiver. The strength of these wavelets decays rapidly as one moves on
the edge away from the point at the shortest source-edge-receiver distance.
This interpretation is supported by the fact that the pressure field as expressed
by equation (48) is null for tQ t0 and then has an infinitely long wake
starting from infinity at t= t0, diminishing rapidly in amplitude at increasing
times.

As a coarse first approximation, the diffracted pressure may then be discretized
as if it were resulting from the infinite number of secondary sources on the first
edge, emitting at successive discrete time intervals. The double diffracted field is
then the build-up of the pressures resulting from the diffraction of these first order
waves on the second edge [18]. The secondary sources (SS) S0, S1, Sn · · · are
situated on the first edge in such a way that the successive distances source–receiver
via the SS’s, and then the second edge, lag one another by DT, the distance
Sn–second edge–receiver being of course the shortest. Then, the mean pressure due
to each SS is calculated according to

�p(nDT)�=
1

DT g
(n+1/2)DT

(n−1/2)DT

p(t) dt, (52)

where DT is the discretizing time corresponding to the Nyquist frequency. This
last field is then normalized by

pd = rS/4pRDT (53)

to associate to each SS a strength

Sssn =FnS, Fn = 1
2�p(nDT)�/pd . (54)

There is some controversy about how many SS’s to take into consideration in the
double diffraction algorithm, but from numerical tests it was found that the few
in the immediate neighborhood of the central one are of most significance. As a
simple rule it is in general sufficient to take into account only those SS’s whose
pressure would correspond to pfinal E 0·05p(0DT), in accordance with the argument
in reference [18]. Moreover, it was noted also from the numerical tests that
considering more than the second order diffraction loads the computation without
any appreciable improvement of the amplitude of the total field as predicted by
the double diffraction.
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Figure 3. Geometry for the calculation of the scattered field. S is the source and R the receiver.
The strip is of width 2a.

6. NUMERICAL EXAMPLES

Some numerical examples are considered in this section for comparing the
theoretical predictions made by the exact potential theory to those of the
approximate approach using the exact B–T theory of the half plane for the strip.
For this latter, a transformation into the frequency domain of the time domain
expression in equation (48) is needed. This was done by means of the NAG
software package which includes a varied assortment of high precision quadrature
subroutines [21].

The scattered field by the strip is defined in this context as the contribution to
the total field due to the existence of strip. Hence, if one denotes by uwith and uwithout

the pressures respectively with and without the strip, the scattered pressure uscat

would then be given by

uscat = uwith − uwithout . (55)

In order to be able to give a more qualitative and quantitative presentation of the
numerical results, the scattered pressure is presented as normalized to the pressure
without the strip, i.e., the quantity presented in the figures is the logarithm to the
base 10 of

=uscat /uwithout == =uwith /uwithout −1=. (56)

With respect to the double diffraction, the number of secondary sources is
somehow dependent on the frequency of interest because for shorter wavelengths
the mutual interference between the waves sent by the secondary sources decreases

Figure 4. Amplitude and phase of the multiply diffracted field for the case in Figure 3 for ka=1.
——, Single diffraction; , , , ,, multiple diffraction. Left amplitude, and right phase.
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Figure 5. Polar diagrams for the amplitude of the scattered field normalized to the direct field;
geometry corresponding to Figure 3; far field: – – – – – –, equation (38) and ———, equation (45).
B-T theory: · – · – · – · –, single diffraction and , , , ,, multiple diffraction.

the significance of their contribution to the total field. Consequently, the
corresponding improvement brought to the total diffracted field would be rather
limited to the low components of the frequency spectrum.
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As a first case of study, calculations of the scattered field were made for the
geometry in Figure 3 for different values of the angle uR .

First, for the B–T approach, a check was made on the stability of the multiple
diffracted field at taking an increasing number of SSs. As a result and which is
illustrated in Figure 4, already at a frequency such that the strip is about one third
wavelength wide, the value of the diffracted field stabilizes at the first few
secondary sources. Hence, considering more than around 20 of the strongest SSs
would unnecessarily load the computations.

In Figure 5, and as a first application, evaluations were made for the amplitude
of the scattered field for a varying polar angle uR with values ranging from 0 (front
scattering, receiver in shadow) to p (back scattering) and for different values of
ka, k being the wavenumber and a half the width of the strip.

For both theoretical approaches, the polar curves fit relatively well, especially
at the lower ka values. At the lateral receiver positions it is difficult to decide on
which approach has the better prediction for both of them become somehow
unreliable at these positions. Regarding the potential theory approach, this is due
to the various approximations made for the calculations especially those which led
to equation (41). On the other hand, and for the approximate approach built on
the half plane solution, a more in depth examination of the sources of errors may
be needed. To elaborate a little more on this and to take as an example the already
worked out problem of the plane wave scattering by a thin hard free hanging strip,
the scattered field in this case attains its minimum value of zero for tangential wave
incidence; the wave impinging on the strip at grazing incidence resumes its way
as if it were unaware of the presence of the strip [22]. According to the reciprocity
principle, the scattered field would then also be null in the plane of the strip
whatever the direction of the incident wave. With reference to Figure 5, this is
obviously satisfied for the potential theory solution but not for the approximate
solution. For this latter, neither the single nor the multiple diffraction part of the
scattered part is null in the plane of the strip. For an observation point situated
in this plane, the field diffracted by one edge of the strip is zero in the half plane
extending away from this edge and not containing the other edge (this could be
proved through setting u= p in equation (51)). On the other hand, the diffracted
field is not null in the complementary half plane (u=0 in equation (51)).

For the potential theory approach, the far field solution (equation (38)) exhibits
a somewhat larger value than in the case where both source and receiver are at
distances of the same order from the strip (equation (45)). Both curves lie parallel
to each other with a distance depending only on the geometry of the case under
study. This is a consequence of the fact that both approximations differ only in the
value of the second coordinate of the stationary point (value of q in equation (26)).

In the results from the B–T theory, the multiple diffraction, although
contributing a great deal to the total scattered field at the low frequencies, proves
to be of low efficiency at higher ka values. Another shortcoming of the actual
formulation of the multiple diffraction is that it performs poorly in the transition
region between the uninsonified to the insonified regions, or at the boundary for
these regions corresponding to the image of the source through the strip. These
regions should normally have no real physical significance, and the failures in them
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are merely the consequence of applying the multiple diffraction treatment. In fact,
as the observation point penetrates the geometrical boundary, the slope of the
frequency curve of the diffracted energy moves from f−1/2 at large angles to a flat
spectrum f 0, corresponding thus to a delta function in the time domain [18]. This
singular behaviour of the diffracted field is inherent in its formulation, equation
(48), in order to fulfill the continuity of the total field when moving across the
geometrical boundaries. These transition zones are also found to be somewhat
dependent on frequency as one notices that their angular size diminishes the higher
the frequency. It is thus advised to discard using multiple diffraction at such zones.
As in almost all cases of diffraction, one notices also the appearance of scattering
lobes in the response curves bringing into evidence the directivity characteristics
of the scattered field. The higher the frequency, the greater the number of lobes.
This feature is found in practically almost all cases of diffraction by objects having
two or more parallel diffracting edges and, in terms of geometrical optics, a direct
and plausible explanation may be found in the mutual interference between the
waves propagating from the diffracting edges. In the case of Figure 5, the
scattering lobes have a more or less periodic pattern for kaq p/2 (strip width
larger than a half wavelength). For lower values of the frequency, the path
difference from source to receiver past the edges is less than l/2 and no interference
phenomena can occur; hence no lobe may be observed; Figure 5(a) for ka=1. For

Figure 6. Amplitude of the scattered field re free field for different combinations of source and
receiver positions. Strip width 2a=30 cm. Potential theory approach: – – –, equation (38), and
———, equation (45). B-T theory: · – · – ·, single diffraction, and , , , ,, multiple diffraction.
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shorter and shorter wavelengths, the lobes become sharper and more pronounced
with an angular periodicity Du satisfying approximately 2aDu= l, where 2a is the
width of the strip and l the wavelength.

In Figure 6, the results of similar calculations on the scattered field for fixed
positions of the source and the receiver are plotted against frequency as a function
of ka. A value of ka=3 corresponds approximately to a strip width equal to one
wavelength.

A first important observation to be made is that the scattering, as opposed to
the edge diffraction of sound waves is rather a high frequency phenomenon. In
fact, as expressed in equation (56), one can deduce from Figure 6 that for very
low frequencies the amplitude of the scattered field takes on negligible values
whereas at higher frequencies it tends towards its geometrical optics value. For
all the cases considered in this study, scattering starts to exhibit rather abruptly
its strongest behaviour for frequencies corresponding to a strip width equal to
about half a wavelength. As the frequency is increased, the amplitude of the
scattered field for the forward and back scattering becomes smaller after a
maximum at a ka value of around 10–15. This is well seen in the case of forward
scattering, Figure 6(a), where for very short wavelengths the value of the scattered
field tends, with an opposite phase, to that of the incident field and the curve of
the amplitude approaches the value 0. This trend is less well marked in the case
of backward scattering; see Figure 6(d), where the wave is incident in a direction
normally to the strip. In this case, both the backscattering and the specular
directions coincide and the scattered pressure is at the maximum of its amplitude,
i.e., the value of the scattered field tends to that of the specularly reflected field,
and in both these latter cases the edge diffracted phenomenon becomes less and
less significant for higher frequencies.

The solution of the integral equation, equation (15), gives satisfactory results
for values of ka up to about 15 (strip about 5 wavelengths wide). Again, the
predictions for the scattered field resulting from equations (38) and (45) follow
each other in a perfectly parallel manner and are only some dBs apart due to the
different values of the co-ordinate q of the stationary point in equation (26).

There is also to be noticed a quite strong interference pattern in the forward
scattering when both edges of the strip lie in proximity to the sight line joining
the source to the receiver. In this geometrical configuration of the experiment, see
Figure 6(b), the scattered field in the geometrical optics sense is the sum of the
contributions from the edge waves generated at the sharp straight parallel
boundaries of the strip. These two components have about the same amplitudes;
hence the comb filter effect resulting from their superposition. This is in a way as
similar to Young’s earlier experiment on the interference of light by two parallel
narrow slits in an opaque screen. In this famous optical experiment, the
interference pattern occurs in space whereas in our case one can easily calculate
the frequency in the periodicity of the interference pattern as being approximately
equal to ka1 p/cos (uR )=z2p. This phenomenon, also commonly known as
Fresnel diffraction is due to the relatively large amplitude of the edge diffracted
wave at the geometrical boundaries of the incident field, the magnitude of which
may be of the same order as that of the incident field. The envelope of the
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scattering curve is also seen in this case to decrease in amplitude for shorter
wavelengths, which confirms again the lesser significance of the edge diffraction
phenomenon for increasing frequencies. The interference between the edge
diffracted waves, although also present near the geometrical boundary of the
reflected wave, does not manifest itself in the case of Figure 6(c) simply because
it is almost completely masked by the stronger wave which is specularly reflected
by the strip. In this latter case, a plane hard scatterer may be considered as an
ideal reflector when, according to a Huygens’ construction of the Fresnel zones,
it contains at least half of the innermost Fresnel zone [23], a condition which is
satisfied for the present strip at ka1 11. The interference of the edge waves has
a negligible contribution to the scattered field in the case of Figure 6(a) because
the receiver, being situated on the normal passing through the middle of the strip,
is at equal distances from both its edges and the diffracted pressures emanating
from them are consequently in phase for all frequencies. The same reasoning
applies as well for the case of backscattering in Figure 6(d).

7. CONCLUSIONS

In this paper the problem of scattering of a spherical wave by a thin hard strip
has been solved by means of an integral equation method. The unknown in the
integral equation is the potential jump across the strip which is expanded in some
appropriate functions, with account taken of the surface potential behaviour at
the edges of the strip. The formulation is direct and the numerical implementation,
which for the far field case is relatively easy, permits the treatment of quite high
frequencies. An approximate approach in which an exact solution of the
diffraction problem by a half plane is used, has also been presented and compared
to the actual solution. It is shown that such approximate solutions, even when
taking account of the multiple diffraction between the edges of the strip, may give
substantial errors in estimating the scattered field at observation points
approaching the plane of the strip. Using the potential theory gives the right
prediction for such cases.
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APPENDIX: ‘‘FINITE’’ FOURIER TRANSFORM OF THE RELATED
CHEBYCHEV ‘‘POLYNOMIALS’’, EQUATION (18)

The related Chebychev polynomials

8n (x)=6 cos (n arcsin x)
i sin (n arcsin x)

n=1, 3, 5, . . .
n=2, 4, 6, . . .7 (A1)



. 856

are related to the true Chebychev polynomials of the first kind Tn (x) by

Tn (x)= cos (n arccos x) (A2)

and of the second kind Un (n)Un (x) by

Un (x)=
1

z1− x2
sin ((n+1) arccos x) (A3)

through the following. First, with the help of

arccos x+arcsin x= p/2,

one can write

8n (x)=6cos (np/2− n arccos x)= (−1)(n−1)/2z1− x2Un−1(x)
i sin (np/2− n arccos x)= i(−1)n/2z1− x2Un−1(x)

n=1, 3, 5, . . .
n=2, 4, 6, . . .7.

(A4)

Then, Un is related to Tn through

Un (x)= [1/2(1− x2)][Tn (x)−Tn+2(x)]. (A5)

Interest here is in evaluating the integral

I=g
a

−a

8n0xa1 e−iqx dx. (A6)

With the change of variable

y=(x/a)c dx= a dy and −aE xE + a c−1E yE+1, (A7)

then

I= a g
1

−1

8n (y) e−iqay dy, (A8)

and, for n odd,

I= a g
1

−1

(−1)(n−1)/2z1− y2 1
2(1− y2)

[Tn−1(y)−Tn+1(y)]

× (cos (qay)− i sin (qay)) dy. (A9)

Moreover, for n odd, Tn2 1 is even and Tn2 1 sin is odd which gives a null
contribution to I. Thus one is left with

I= a(−1)(n−1)/2 g
1

0

Tn−1(y)−Tn+1(y)

z1− y2
cos (qay) dy, (A10)
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which gives [24]

I=
pa
2

(−1)
n−1

2 $(−1)
n−1

2
Jn−1(qa)− (−1)

n+1
2

Jn+1(qa)%, (A11)

and, upon using

Jn−1(qa)+ Jn+1(qa)= (2n/qa)Jn (qa), (A12)

one gets the final result

I=(np/q)Jn (qa). (A13)

For n even, Tn2 1 is odd and Tn2 1 cos is odd which gives a null contribution to I;
thus

I=−a(−1)n/2 g
1

0

Tn−1(y)−Tn+1(y)

z1− y2
sin (qay) dy, (A14)

which gives [25]

I=(pa/2)(−1)n/2[(−1)n/2−1Jn−1(qa)− (−1)n/2Jn+1(qa)], (A15)

which in turn, by use of equation (A12), gives equation (A13).
Furthermore one can express, for later use, the integral

I'=g
a

−a

8n0xa1 eiqx dx. (A16)

For n odd, 8n =8*n and

I'=g
a

−a

8*n 0xa1(e−iqx)* dx, (A17)

where * denotes the complex conjugate. Hence

I'=$g
a

−a

8n0xa1 e−iqx dx%
*

=
np

q
Jn (qa). (A18)

For n even 8n =−8*n and

I'=−(np/q)Jn (qa). (A19)

Equation (A16) can finally be written in a generalized form as

g
a

−a

8n0xa1 eiqx dx=(−1)n−1 np

q
Jn (qa). (A20)
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