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Abstract

This paper is concerned with the problem of sound screening by a wedge-like barrier. The sound source is
assumed to be point like, and the receiver is located in the shadow of the source sound field, so that
according to geometrical optics only the field diffracted by the edge of the barrier is considered. First, for
the hard wedge in space, three models are used for calculating the amplitude of the edge-diffracted field.
These are the uniform theory of diffraction (UTD), the Hadden–Pierce model, both in the frequency
domain, and the Biot–Tolstoy theory of diffraction which is a time domain formulation. It is first shown
that even at relatively low frequencies, the frequency domain models perform quite satisfactorily as
compared to the exact time domain theory. Hence, and due to its relative simplicity the UTD is proposed as
an accurate calculation scheme for solving problems with edge diffraction by hard wedges. It is also proved
from theoretical calculations that the amplitude of the edge-diffracted field increases for an increasing angle
of the wedge, and consequently the hard half-plane gives the lowest field amplitude in the shadow zone.
Some applications are then considered for evaluating the performance of a barrier on a flat ground, either
completely hard or with mixed homogeneous boundary conditions. An improvement of the scheme for
calculating the sound field in the all-hard case is achieved through considering the multiple diffraction, in
this case only to the second order, between the top of the wedge barrier and its base. The results show that
for usually occurring situations, increasing the angle of the hard wedge barrier affects negatively its
efficiency through diminishing its insertion loss. These conclusions are also supported by the results of some
experimental measurements conducted at a scale-model level.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Noise emitted by rolling vehicles constitutes a serious problem for people dwelling nearby
roads. Barriers are thus often used in residential areas for reducing this noise emanating from
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traffic. However, researchers are often in need of theoretical prediction schemes enabling them to
foresee the performance of newly designed noise-reducing devices before installing them or
running full-scale tests on their prototypes. Theoretical predictions in the case of noise barriers are
usually based on either numerical techniques like the boundary and the finite element methods
(BEM and FEM), or on analytical models. In this latter case, a simplified calculation scheme
would be the combination of a model for describing the reflection of sound waves on the ground
and a model that takes into consideration the phenomenon of wave diffraction by straight-edged
objects. For a general overview of the different theories and techniques that have been developed
for handling the problem of wave diffraction around semi-infinite objects reference is made to the
Bowman et al. work [1] and to the classical works of Macdonald [2], Bromwich [3], Whipple [4],
and Carslaw [5].
During the past few decades there has been an intensive research activity in the field of noise

abatement by barriers, and as a consequence several accurate models have been developed both
for acoustical wave reflections at a flat impedance ground, and for wave propagation around
semi-infinite geometries. Already from the late 1950s or so, several authors contributed to the
development of numerous solution strategies to the problem of sound diffraction by simple
screens and with particular applications to traffic noise barriers. Some of the more recently
published results on the problem of the simple hard wedge in space include those of Oberhettinger
[6,7], Garnir who presented the expression for the Green functions for the wedge with ideal hard
or ideal soft faces [8], Friedlander [9], Maliuzhinets [10], Kusnetzov [11], Osipov and Norris [12],
Thuzilin [13], Biot and Tolstoy [14], Tolstoy [15,16], and Buckingham and Tolstoy [17]. Keller and
Blank [18], Lee et al. [19], and B .uy .udkura [20], processed also various improvements to the then
popular geometrical theory of diffraction (GTD), while Kawai expressed the field diffracted by a
pillar with many sides through a consideration of the mutual interaction between the waves
diffracted by the edges of the pillar [21]. A similar approach was also taken by Elsherbeni and
Hamid [22] and Robertson [23] to treat the case of a wide truncated wedge. The work of
Kouyoumjian and Pathak is also worth mentioning in this context as their solution to the wedge
problem is another more elaborated version of the GTD remedying the main failure of continuity
of the total field at the geometrical transition regions [24]. Ambaud and Bergassoli [25], Pierce [26]
(who treated the case of a truncated wedge by adding higher terms accounting for the double edge
diffraction), and Hadden and Pierce [27,28] gave more tractable approximations to classical
solutions of the problem with useful expressions of the sound pressure field around a hard wedge
for specific positions of the sound source and the receiver. Mechel treated the problem of wedge
scattering by means of modal analysis and showed how sound sources can be introduced in the
wedge apex, and how to treat these field singularities [29].
The problem of the wedge has also attracted the interest of researchers in electromagnetism

with applications to the design of antennas and reflectors, and to the prediction of wave scattering
by perfectly conducting metallic or dielectric wedges. Solutions are given for different kinds of
wave incidence, and that in comparison to the size of the scattering object, the range of
wavelengths in the electromagnetic case may be several orders of magnitude smaller than that of
sound waves, these solutions have often been successfully implemented to the acoustical case [30–
46]. The acoustical counterpart of the dielectric case in electromagnetism is that of a wedge with
surfaces of general impedance boundary conditions, a problem also treated by some authors with
various different methods [10, 47–50].
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Some of the other more specific problems involving the wedge geometry include the cases of a
finite wedge where the diffracted field is evaluated through a line integral over the illuminated part
of the wedge. The knowledge of the diffraction coefficients for the ideal boundary cases permitted
the development of the notion of equivalent currents, which are basically fictitious currents used
to account for the field diffracted by the edge of impedance structures [51–53]. A closely related
method uses the notion of incremental diffraction length coefficients [54,55]. Another extension of
the GTD to imperfect wedges includes also numerical techniques [45,56] as well as heuristic
methods based on other exact methods for the determination of GTD coefficients [57–58].
Other various applications of wedge-shaped scattering wedges make reference to Mechel’s work

where a study of the problem of sound propagation in wedge-shaped ducts permits the
determination of the mode configuration for this particular type of ducts [59,60]. Other related
works, but more relevant to the propagation of sound in a submarine environment with a hilly
bottom, are due to Buckingham [61] (with either perfectly hard, pressure release or mixed
boundary conditions on the faces of the wedge), Graves et al. [62], Felsen and Kuperman [63] and
Arnold and Felsen [64] mostly with the method of expressing the field as the sum of normal modes
in a similar manner as that used earlier by Biot and Tolstoy [14]. In conjunction to this, it is
worthwhile mentioning that Kinney et al. extended the solution to include the case of a perfectly
soft wedge, with simple sign changes introduced on some of the terms expressing the diffracted
field [65].

2. Theory: diffraction of a spherical wave by a hard wedge

In this section, comparison is made between the performance of three different models used for
the calculation of the edge diffraction of a spherical wave by a hard wedge. Fig. 1 illustrates the
geometry of the wedge with the different parameters needed later for calculations. Throughout the
whole paper the time dependence of the field variables is omitted and is taken in accordance with
the theory in the original works, that is ejot; except for the next section where it is taken as e�jot:

2.1. The UTD

From a geometrical point of view, if the incident field is ui ¼ AðRÞe�ikrðRÞ; krðRÞ being the phase
along the ray and k the wavenumber, the diffracted field ud a distance r from the diffraction point

Fig. 1. Geometry of the problem of diffraction of a spherical acoustical wave by a hard wedge.
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is given by [24]

udðRÞ ¼ uiðQÞAðr0; rÞDhe
�ikr; ð1Þ

where uiðQÞ is the incident field at the point of diffraction Q on the edge, Aðr0; rÞ the coefficient
depending on the characteristics of the source of the primary rays, r0 being the distance from the
source to Q in case the source is either cylindrical or spherical. The diffraction point Q is the point
on the diffracting edge making minimum the path from the source to the receiver via the
diffracting edge. The coefficient Dh depends on the angles of the incident and the diffracted rays
and on the diffracting screen, and h denotes the hard type of boundary on the screen. For
spherical wave incidence the expressions of the coefficients A and Dh are, respectively, given by

Dh ¼
�e�ip=4

2n
ffiffiffiffiffiffiffiffi
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and

Aðr0; rÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r0

rðr0 þ rÞ

s
; ð3Þ

L being a distance parameter given by

L ¼
rr0

rþr0
sin2z ð4Þ

and F ðX Þ; sometimes referred to as the transition function is a form of Fresnel integral

F ðX Þ ¼ 2i
ffiffiffiffi
X

p
eiX

Z
Nffiffiffi

X

p e�it
2

dt: ð5Þ

The argument a7 is expressed by

a7ðaÞ ¼ 2 cos2
2npN7 � a

2

� �
; ð6Þ

in which N7 is an integer which most nearly satisfies the equality 2pnN7 � a ¼ 7p: The
parameter n is a measure of the wedge angle, and is given by n ¼ yw=p taking the value of 2 for a
half-plane. The angle made by the incident ray with the normal to the edge at the point of
diffraction is z (according to the UTD, this angle is also equal to that made by the diffracted ray
and the normal). In what follows only the case of normal incidence is considered, that is z ¼ 901:
In this case, the diffraction point is found simply as the intersection point between the edge of the
wedge and the plane normal to it and containing the source and receiver points.
The expression of the diffracted field as given in Eq. (1) ensures that the total field is continuous

throughout all space because the discontinuities in the geometrical optics field components are
exactly compensated by those in the diffracted field at traversing the geometrical incidence and
reflection boundaries.
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2.2. The Biot–Tolstoy (B–T) theory of diffraction

This theory is exact and in the time domain. For a Dirac pulse from a point source S

u ¼
rA

4pR
d t �

d

c

� �
; ð7Þ

where d is the distance range from the sound source and, the amplitude of the edge-diffracted
wave is [14, 66]

udðtÞ ¼
�Arc

4pyW

fbg
expð�nyÞ
rr0 sinhðyÞ

: ð8Þ

Then, the B–T theory predicts, as mentioned earlier, the eventual existence of a direct, one or
two reflected pulses depending on the wedge angle and the positions of S and P; and a diffracted
wave due to the tip of the wedge. This diffracted wave appears at a time t0 after the source has
emitted its spherically divergent pulse

t0 ¼ ½ðr þ r0Þ
2 þ z2�1=2=c; ð9Þ

where t0 is called the least time over the wedge, r0 and r are the normal distances to the wedge of,
respectively, the source and the receiver, and z the lateral distance between them. In Eq. (8) the
expression of y is given by

y ¼ arccosh
c2t2 � ðr2 þ r20 þ z2Þ

2rr0
; ð10Þ

and fbg is the sum of four terms with different addition signs in the argument of the trigonometric
functions in

fbg ¼
sin½nðp7y7y0Þ�

1� 2expð�nyÞcos½nðp7y7y0Þ� þ expð�2nyÞ
; ð11Þ

with c the speed of propagation of sound. The wedge index n is in this case defined by n ¼
p=yw ¼ 1=n: The exact frequency form of Eq. (4) is not available in closed form, and therefore a
numerical Fourier transform is used to evaluate it.

2.3. The Hadden–Pierce (H–P) model

The Green function solution for the diffraction of a spherical wave by a hard wedge is inspired
by classical theory [8]. Approximations are necessary as a result of numerical difficulties faced in
attempting to give closed-form solutions. These have been presented by Hadden and Pierce [27,28]
for the cases where the receiver is situated in the far-field or at the geometrical shadow boundaries.
Related work has reported agreement with carefully mounted experiments [25], as well as that the
model has been applied to diffraction of acoustic impulses [67].
The solution to the Helmholtz equation satisfying the hard boundary conditions, @u=@n ¼ 0; on

the sides of the hard wedge y ¼ 0 and yw (see Fig. 1) may be expressed as

u ¼
X4
i¼1

½uðxiÞHðp� xiÞ þ udðxiÞ�; ð12Þ
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where

x1 ¼ jy0 � yj; x2 ¼ 2yW � x1; x4 ¼ yþ y0; x3 ¼ 2yW � x4 ð13a2dÞ

and HðaÞ is the Heaviside unit step function.
The first three terms of the field are found from pure geometrical considerations, that is for

i ¼ 1; 3 and 4, uðxiÞHðp� xiÞ represent, respectively, the direct and the reflected waves from the
sides y ¼ 0 and yw of the wedge. x2 being always greater than p; the term uðx2ÞHðp� x2Þ is always
zero and is written only for the tractability of the expression for the field. The uðxiÞ are supposed
to be of the form eikRi=Ri with

Ri ¼ ½r2 þ r20 þ z2 � 2rr0 cos xi�
1=2: ð14Þ

The sum on the left-hand side of the expression for the total field (Eq. (12)) (
P4

i¼1 udðxiÞ) may be
interpreted as a diffracted wave. For each xi; ud is expressed as an integral of the form

udðxiÞ ¼ �
1

p

Z
N

0

uðpþ iwÞQðw; n; xiÞ dw; ð15Þ

where

Qðw; n; xiÞ ¼
ðn=2Þsin½nðp� xiÞ�

coshðnwÞ � cos½nðp� xiÞ�
; ð16Þ

n ¼ p=yw being the wedge index seen earlier, and uðpþ iwÞ is the previous eikR=R; but now with x
in Eq. (14) replaced by ðpþ iwÞ.
Because of the oscillatory character of the integral in Eq. (15), its direct numerical evaluation

presents some difficulties, but some useful approximations for the most practical cases have been
presented. Hence, a new form for the integral is presented with a new parameter A

AðxiÞ ¼ ðn=2Þð�yw � pþ xiÞ þ pHðp� xiÞ; ð17Þ

and with this in mind the new expression of ud is reformulated as

udðxiÞ ¼ ð�1=pÞAðxiÞðe
ikL=LÞFnðjAj; a; eÞ ð18Þ

in which

FnðjAj; a; eÞ ¼
Z 1

0

IðqÞ dq; ð19Þ

a ¼ krr0=L; e ¼ rr0=L2; L ¼ ½ðr þ r0Þ
2 þ z2�1=2; ð20Þ

IðqÞ ¼ ðL=RÞeikðR�LÞ: ð21Þ

The quantity L is the least time path, i.e., the shortest two segment distance from the point source
to the field point via the edge, and is simply equal to the product of the least time t0 in Eq. (9) and
the speed of sound c:
Approximations of ud for different values of A; a and e are presented next. For the case at hand,

the following results are obtained. When both the source and the receiver are far from the edge of
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the wedge, a ¼ krr0=Lb1 and jAj is arbitrary, one has [27]

FnðjAj; a; eÞD
pffiffiffi
2

p sinjAj
jAj

eip=4

½1þ ð2eþ 1=2Þcos2jAj=n2�1=2
ADðPÞ; ð22Þ

with

ADðpÞ ¼
Pffiffiffi
p

p Z
N

0

e�u2

ðp=2ÞP2 þ iu2
du ¼ f ðPÞ � igðPÞ ð23Þ

and

P ¼
4a
p

� �1=2
cosjAj

½n2 þ ð2eþ 1=2Þcos2jAj�1=2
: ð24Þ

2.4. Numerical comparison between the three models

The results of some calculations on the three models presented are illustrated in Fig. 2. The
amplitude of the edge-diffracted wave was normalized to the free-field spherical wave at a source–
receiver distance equal to r þ r0: The distances r0 and r were chosen, respectively, 2 and 4m, and
the wavelength of the signal was taken for values ranging from l ¼ r0=100 to 10r0: The important
observation from these last results is that even at the lowest frequency considered, the two
approximate models have a very satisfactory performance as compared to the exact theory, the
frequency form of this latter being evaluated from Eq. (8) through a numerical Fourier transform.
The increase of the field amplitude of the edge-diffracted field is more accentuated at wedge angles
greater than 901. Similarly, for the special case of the half-plane, and for fixed positions of the
source and the receiver, the amplitude of the edge-diffracted field decreases by about 2.5 dB for
each doubling of the frequency. From an engineering point of view, and due to the relative ease of

Fig. 2. Diffraction of a spherical wave by a hard wedge. Left: geometry; Right: theoretical comparison between three

models.
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its implementation in calculation procedures, the UTD is an attractive alternative tool for
calculations on problems with hard wedges.

3. Reflection of a spherical wave at an impedance boundary

Usually, the total field above a reflecting boundary is expressed as the sum of three components,
which are the direct field source–receiver, the field from the image source through the boundary as
if it were perfectly hard, and a correction term which takes into account the impedance of the
boundary.

3.1. Case of a boundary with a homogeneous impedance: Thomasson’s model

According to this model, the total field at the receiver is made of three contributions: a direct
wave with the distance range R1; a reflected wave with R2 as if the ground were perfectly hard, and
a correction term taking into account the complex and finite impedance of the ground [68]. Let n
be the specific point admittance of the boundary, i.e., n ¼ rc=Z; with r the density of air.
Then

utot ¼
eikR1

4pR1
þ

eikR2

4pR2
�CR: ð25Þ

The details for calculating CR are as follows:

CR ¼
CSD þCB Reðg0Þ > 1 and ImðnÞo0;

CSD else;

(
ð26Þ

CSD ¼
kn
2p

eikR2

Z
N

0

e�kR2tffiffiffiffiffiffiffi
W1

p dt; ð27Þ

W1 ¼ ½cos a0 þ n�2 þ 2it½1þ n cos a0� � t2; ð28Þ

Reð
ffiffiffiffiffiffiffi
W1

p
Þ

o0 Reðg0Þ > 1; ImðnÞo0; t > t1;

> 0 else;

(
ð29Þ

t1 ¼ �ImðnÞ
ReðnÞ þ cos a0
1þ cos a0 ReðnÞ

; ð30Þ

CB ¼
1

2
knHð1Þ

0 kðxS þ xRÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

ph i
e�ikðySþyRÞn; ð31Þ

g0 ¼ �n cos a0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
sin a0; Re

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

ph i
> 0: ð32Þ

The term CB as given in Eq. (26) has been termed as a ‘‘surface wave’’ by Thomasson who invites
however some caution on the general use of this expression. This is because only in some cases,
like the one of a ‘‘finite impedance’’ boundary that it may be possible to theoretically split the
total field into two physical components, a ‘‘space wave’’ term and a ‘‘surface wave’’ term and that
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in more general instances it may not be well justified to always associate physically a surface wave
with the function CBU

3.2. Case of a boundary with an impedance discontinuity: deJong et al. model

To evaluate the insertion loss of a barrier on the ground, it is often necessary to have at hand a
calculation scheme enabling one to evaluate the field due to a sound source in the presence of a flat
boundary with an impedance discontinuity. For not too extreme geometrical situations, the
simple, and reasonably efficient model presented by deJong et al. [69] states that assuming that the
free-field source–receiver is uf ; the excess attenuation due to the introduction of the two-
impedance boundary is given according to (the line of impedance discontinuity is assumed to be
normal to the line joining the sound source to the receiver)

u

uf

¼ 1þ
R1

R2
Q1;2e

ikðR2�R1Þ

þ
R1

R3
ðQ2 � Q1Þ

e�ip=4ffiffiffi
p

p F
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðR3 � R1Þ

ph i
7F

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðR3 � R2Þ

ph i
eikðR2�R1Þ

n o
; ð33Þ

where R3 is the two-segment distance source–receiver via the impedance discontinuity, and Q1;2

are the spherical wave reflection coefficients for an infinite mono-impedance boundary, and which
may be calculated according to Thomasson’s exact theory or to the Chien and Soroka
approximate theory [70]. The function F ðxÞ is the Fresnel integral defined by

F ðxÞ ¼
Z

N

x

eiw
2

dw ð34Þ

and Q1ðQ2Þ with +(�) are used in case the specular reflection point falls on the boundary nearer
(farther) the sound source.

4. Numerical examples: a hard wedge-like barrier on the ground

With reference to Fig. 3, the total pressure field at the receiver may be considered as the sum of
four components represented by the wave propagation paths source-top of barrier-receiver SHR,
S0HR, SHR0 and S0HR0.

Fig. 3. Illustration of the wedge-shaped noise barrier on a flat ground.
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This simplified modelling is used in almost all analytical approaches to this kind of problem and
is valid as long as the frequency is not too low (usually down to a wavelength corresponding to a
typical size of the problem). The primes on the letters refer to reflections on the ground and for
instance, the path S0HR represents a wave radiated by the source, which then reflects on the
ground (hence seems to originate at S0, the image of S through the ground), and proceeds
afterwards to the receiver R after diffraction at the top H of the barrier. As an illustrative
application of the theory exposed hitherto, calculations are made on a typical traffic noise
situation. The efficiency of a noise barrier is evaluated in terms of its insertion loss, which is
defined as the difference in dB of the sound levels at the receiver before, and after mounting the
barrier on the ground.

4.1. Case of a perfectly hard ground

As the diffraction phenomenon considered here is applied to finite diffracting surfaces, a
consideration of the interaction between the wedges at the top and at the base of the barrier is
expected to improve the evaluation of its insertion loss. Hence the use of the notion of fictive
sound sources on the diffracting edges. The calculation of the positions and strengths of these
secondary sources follows the method as described by Medwin et al. [71]. The effect of the double
diffraction is expected to be significant only for the contribution of the secondary sources lying at
most proximity of the point of diffraction on the edge. Fig. 4 shows the curves of variation of the
strength of the secondary sources as a function of their order number for the different double
diffraction paths from the sound source to the receiver, the wedge angle being equal to 90o. With
reference to Fig. 3, the co-ordinates of the various points were S(�5, 0.4m), R(12, 1.8m) and H(0,
3m).
Fig. 5 (left) illustrates the variation of the strength of the secondary sources of order zero, that

is the strongest fictive secondary source on the edge, as a function of the wedge angle. For the path
along SBHB0R, the strength of the secondary sources is equal to that of the secondary sources
along the path SBHB0R0 for the reason that the strength is determined from the diffracted field
along the path SBH. Note the relatively slow variation of the sources strength along the paths
SHB0R and S0HB0R. The corresponding amplitudes of the diffracted fields are plotted on the
curves of the right-hand side of the same figure.
The calculations show a rapid decrease of the strength of the secondary sources for an

increasing distance from the point of diffraction on the edge, and consequently only the 30
strongest secondary sources on either side of the diffraction point were taken into consideration in
the calculations that follow.
Fig. 6 illustrates the variation with frequency of the insertion loss of a hard wedge-like barrier

on a perfectly hard ground. The calculations were made through taking into account both the
single diffraction at the top edge of the barrier, and through combining both the single and double
diffraction.

4.2. Case of an absorbing ground with an impedance discontinuity

The efficiency of a simple wedge barrier is evaluated in this case when it is erected on a ground
constituted of a combination of hard, asphalt-like boundary on the sound source side, and soft,
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grass like on the receiver side. For calculating the overall sound levels, it is necessary to know the
frequency variation of the boundary impedances over a wide frequency range. This latter was
determined according to the Delany–Bazley one-parameter model provided that only the flow
resistivity of the boundary material is known [72] (it should however been pointed out that the
validity of this model is restricted to limited values of f =s; f being the frequency and s the flow
resistivity). The flow resistivities of asphalt and grass were taken from the list of experimentally
determined values as determined by Embleton et al. [73].
Fig. 7 illustrates the results for realistic situations, where are plotted the curves of the frequency

variations of the sound pressure level in presence of barriers with different wedge angles. The
curve for the case without barrier is plotted together with these curves. The calculations were
performed at the standard one-third octave bands.
The curves for the variation of the insertion loss of a wedge barrier as a function of the top

angle are illustrated in Fig. 8.
The results from these last two curves show the deterioration of the efficiency of the wedge

barrier for an increasing value of its top angle. The sound pressure level variation with the

Fig. 4. Strength of the fictive secondary sources as a function of position on the edges for the different multiple

diffraction paths. Wedge angle w ¼ 901:
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frequency is almost the same for the different wedge angles except that the curves are displaced
towards higher dB values for barriers wider at the base.

5. Experiments at the scale-model level

As a last consideration of the problem of the wedge barrier, some experiments were conducted
at the scale-model level to complement the theoretical study. It is to be mentioned that these
experiments are of a rather qualitative character, and their results were not compared to their

Fig. 5. Double diffraction at the top and bases of the barrier. Left: strength of the zeroth order secondary fictive source,

normalized to that of the real sound source, as a function of the wedge angle. Right: strength of the corresponding

double diffraction field as normalized to the direct diffracted field, path SHR.

Fig. 6. Insertion loss of a wedge barrier on a hard ground for different frequencies. Left: single diffraction, all three

calculation models. Right: single+double diffraction, B–T theory.
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theoretical predictions. The geometry and sizes involved in the experimental set-up are shown in
Fig. 9, and where the wedge barrier was realized by means of two 8mm thick plywood planks
fastened at the sharpened tops by screws.

Fig. 7. Insertion loss of a hard wedge-like barrier on the ground. Variation with frequency for different wedge angles.

Fig. 8. Insertion loss of a hard wedge barrier on the ground. Variation with the wedge angle.
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Both the cases of an overall hard ground and that of a combined hard–soft ground were
considered. In this latter case, the soft ground on the receiver’s side was realized through setting
an absorbing surface on the hard floor. Fig. 10 shows the frequency curves of the sound level
without barrier, and where the effect of the impedance discontinuity is clearly manifested by the
lower sound pressure level.
Finally, Fig. 11 illustrates the insertion loss curves for different angles of the wedge barrier.

Fig. 9. Sound abatement by a wedge-shaped barrier: schematic illustration of the experimental set-up at the scalemodel

size.

Fig. 10. Sound pressure level over a flat ground. ———: Hard ground, - - - - -: combination of hard–soft ground.
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The overall worsening of the IL of the wedge barrier is clearly seen for an increasing wedge
angle, the decrease amounting to approximately 1 dB per 151 increase of the wedge angle. The case
of a completely hard ground on both sides of the barrier is also found to be detrimental as
compared to a partly absorbing ground.

6. Conclusions

This study was concerned with the problem of sound attenuation by a hard wedge-like barrier.
The two approximate models, the UTD and the H–P model, used for treating the phenomenon of
wave diffraction at the tip of the wedge show excellent agreement with the exact B–T theory.
However, as the B–T theory and the H–P model require quite advanced mathematical and
computational implementations, the UTD is then proposed as an efficient calculation scheme for
considering most engineering applications of the type considered in the present study.
From this study, it has been possible to confirm from theoretical considerations that the

amplitude of the edge-diffracted wave increases for an increasing angle of the wedge. For
problems with typical distances of the same order of the size of a wavelength, the increase of the
amplitude is monotonous and in the order of 0.5 dB per 101 increase of the wedge angle. These
observations are also valid for a hard wedge-shaped barrier on the ground. In conclusion, for
barriers with the same height, the classical thin barrier, with a suitable surface weight is the most
efficient means for the reduction of noise.

Fig. 11. Sound pressure level curves for a hard wedged barrier on hard–soft ground. � � � � � � �: w ¼ 01; - - - - - -:
w ¼ 301; ———: w ¼ 901:
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