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The problem of sound screening by a wedge shaped barrier with general boundary conditions is 
considered. The theoretical methods used for evaluating the effectiveness of a noise barrier on the 
ground often appeal to one model for considering the wave reflection from the ground, and another 
model accounting for the wave diffraction at the top of the wedge barrier. For a point-like sound 
source, there are several attractive models for evaluating the sound field diffracted by either an 
ideally hard or an ideally soft wedge, but few treat the case of a wedge of more general surface 
boundary conditions. The purpose of the present work is to carry out a numerical investigation 
based on an existing diffraction model where the edge diffracted field is given as a high frequency 
asymptotic expression. The sound excitation source is taken as linear and parallel to the edge 
of the wedge, hence the two-dimensional character of the problem. The expression of the field 
diffracted by the edge of the absorbing wedge is adapted from a model where it is developed from 
the solution for plane wave incidence. More specifically, the solution to the case of the line source 
in that model is elaborated by considering a wave spectrum decomposition of a cylindrical wave.  
Numerical results of calculations on an absorbing wedge in free space show that the amplitude 
of the edge diffracted field increases with increasing hardness of the wedge. This field amplitude 
is also found to increase with an increasing value of the opening angle of the wedge, which is in 
agreement with the results for the case of an ideally hard wedge irradiated by a spherical source. 
Another point of interest, which is also considered in this study, is the case of a hard wedge on 
a ground with mixed boundary conditions, and which is considered for both the case of a point 
source and the case of a line source. Further examples are considered for predicting the insertion 
loss of an absorbing barrier in a typical road traffic situation. The barrier is erected on ground 
consisting of a combination of two grounds with different impedances, namely that of asphalt 
on the source side, and of grass on the receiver side. The results of numerical calculations show 
that the noise shielding performance of the impedance barrier diminishes both for increasing 
hardness of the barrier and for increasing value of the barrier angle. This latter conclusion is 
also in agreement with previous findings for a hard wedged barrier, with a point-like sound 
source. The divergence of the sound source is also found to have a minor effect on evaluating the 
effectiveness of the noise barrier.  © 2003 Institute of Noise Control Engineering.
Primary subject classification: 31.1; Secondary subject classification: 76.1.1

1. INTRODUCTION

     Noise emanating from road traffic is often considered a 
serious problem for people dwelling near roads. Artificial 
barriers or elevated road side banks are thus often used in 
residential areas for reducing this kind of noise. However, 
researchers are often in need of theoretical prediction 
schemes for foreseeing the performance of newly designed 
noise barriers before running full-scale tests on prototypes. 
Theoretical predictions may be made either by numerical 
techniques, or by means of analytical models. In this latter 
case, the most widespread techniques require the combination 
of a model accounting for the reflection of sound waves on 
the ground, and another model for treating the diffraction of 
waves by a straight-edged barrier. During the past few decades 
there has been intensive research activity in this field, and as a 
consequence several accurate models have been developed.
     For more than a century the problem of wave scattering 
by a wedge has been a subject of increasing interest and 
continuous development. Exact analytical solutions have 
first been formulated for the case of plane wave incidence, 

and then generalized to the cases of cylindrical and spherical 
wave incidence. Cases where the wave source is point-like or 
with the wedge faces not perfectly hard or perfectly soft but 
of more general boundary conditions are significantly more 
difficult, and they often necessitate special techniques for their 
solution. In this respect an ideal straight traffic line is often 
represented, with a satisfactory degree of approximation by 
an incoherent linear sound source with the main acoustical 
characteristic being that the pressure field amplitude variation 
exhibits a space variation inversely proportional to the distance 
r from the sound source. However, and in the absence of more 
suitable models, the present paper considers the case of a sound 
pressure field variation following a function, typical for 
a coherent source.
     In acoustics, the problem of the wedge with finite impedance 
faces has been the subject of research for some years,1-6 as 
well as for different applications regarding the case of a hard 
wedge.7,8 Although some special attention has been devoted to 
particular applications of acoustical scattering by wedges,9-12 
it may be said that most of the research on this topic has been 
conducted for various applications in electromagnetism.13-18 
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2. DIFFRACTION OF A CYLINDRICAL WAVE 
BY AN IMPEDANCE WEDGE

     The problem of diffraction by an impedance wedge has 
been solved exactly by Maliuzhinets for a plane incident wave,1 
and the solution for a line source was made by considering the 
plane wave spectrum decomposition of a cylindrical wave.16 

The total field at the receiver position is expressed as the 
sum of three components, two of them being the geometrical 
ones, the direct wave and the wave reflected on either or both 
of the wedge faces, and the wave diffracted by the wedge. 
There is no consideration in this work of the phenomenon of 
wave transmission through the wedge. Figure 1 illustrates the 
geometry of the problem with the faces of the wedge having 
the impedances Z0 and Zn and being at the angles 0 and nπ in 
the fluid medium (n is equal to 2 for a half plane), where:

                                                               (1)

θ0,n being the Brewster angles of the wedge faces and Zc the 
impedance of air, i.e. Zc=ρc, ρ being the density of air, and c 
the speed of sound propagation. The incident wave is assumed 
being , k being the wavenumber, and a time 
dependence factor eiωt is understood and omitted throughout. 
The distance of the sound source to the edge of the wedge is r' 
and that of the field point is r. The corresponding angles made 
with the wedge face nearer to the sound source are respectively 
ϕ' and ϕ. The field diffracted by the wedge ud may be written 
as the sum of four terms, that is   with:16

                    (2)

Note that this expression is the result of a high frequency 
asymptotic formulation. Hence, it is expected to be valid for 
frequencies down to a value such that the wavelength does 
not exceed a typical size in the problem, or equivalently that 
the location of either source or receiver be in the far field. 

Furthermore, the present solution is uniform and is in full 
agreement with the expression formulated by the Uniform 
Theory of Diffraction (UTD) for the hard wedge, where the 
term Pl,m is given by :

                                                                                                 

(3)

where:

               (4)

and:13

     

.

                                                                                            (5)

The function Ψ is the auxiliary function defined by:

       (6)

in which:

     
                                                                                            (7)

and the function ψn(z) is the special function introduced by 
Maliuzhinets, and defined by:

                     (8)

     The function ψn(z) satisfies the parity relation                     
 ψn(-z)=ψn(z), and the property for complex conjugate argument 
ψn(z*)=ψn*(z). A simpler alternative definition of ψn(z) using 
a single integration is:19

              
(9)

and useful and accurate polynomial approximations to 
this function may also be found.20 In Eq. (2) the factor 

 is the transition function defined by 

Kouyoumjian and Pathak and expressed by:21

                                         (10)

with:

                                       (11)

γ=ϕ+(−1)lϕ' and N± the nearest integer satisfying the equality 
2πnN±− γ  = (−1)lπ.
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Fig. 1— Geometry of the problem of diffraction of an acoustical wave 
by an impedance wedge.
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3. REFLECTION OF A SOUND WAVE AT AN 
IMPEDANCE BOUNDARY

     Usually, the total field utot above an impedance boundary 
may be expressed by utot= ui +Qur where ui is the direct field 
source-receiver and ur the field from the image source as 
though the boundary were ideally hard and Q a factor taking 
into account the boundaryʼs impedance.

A. Spherical wave incidence

1. Boundary with a homogeneous impedance: 
Thomasson’s model

     According to this model, the total field at the receiver 
is made up of three contributions: a direct wave with the 
distance range R1, a reflected wave with R2 as if the ground 
were perfectly hard, and a correction term taking into account 
the complex and finite impedance of the ground,22 (see Fig. 
2):

                                              (12)

     Let β be the specific point admittance of the boundary, i.e. 
β =ρc/Zc, with ρ the density of air, then:

            (13)

                                             (14)

                    (15)

           (16)

                                      (17)

     and  (18)

     (19)

     The origin of the system of coordinates is assumed to be 
on the impedance ground between the source and receiver 
positions, and hence R and S have for coordinates S(-xS, yS, zS) 
and R(xR, yR, zR) (Fig. 2). The angle α0 is the angle made by the 
incident ray at reflection on the boundary and the normal at the 
specular point of reflection, i.e. cosα0 = (yS+yR)/R2. The term 
Ψ

Β
 as given in Eq. (18) may be considered as the expression 

of a surface wave contribution.

2. Boundary with an impedance discontinuity: 
deJong et al.’s model

     This model is semi-empirical and permits evaluation of 
the acoustical field above a flat boundary with an impedance 
discontinuity, Fig. 3. The source-receiver line is supposed to 

be normal to the impedance discontinuity line. For not too 
extreme geometrical situations and if ui is the free field source-
receiver, the excess attenuation due to the introduction of the 
two-impedance boundary is given by:

     

                                                                                          
(20)

R3 being the two-segment distance source-receiver via the 
point of impedance discontinuity. Q1,2  are the wave reflection 
coefficients for an infinite boundary, F(x) is the Fresnel integral 
defined by:

                                                            (21)

and Q1 (Q2) with + (−) is used in case the point of specular 
reflection falls on the boundary nearer (farther) from the sound 
source.4 The purpose of introducing this model is to perform 
calculations on the efficiency of a barrier above a ground with 
different impedances on either side of the barrier. It is thus 
necessary to calculate the total sound field prior to erecting 
the barrier, and to compare its numerical performance to that 
of Manara et al.ʼs two-dimensional one. This is done at the 
end of the paper.
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Fig. 2— Propagation of a spherical wave above an impedance bound-
ary.
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Fig. 3— Propagation of a spherical wave above a boundary with an 
impedance discontinuity.



288 Noise Control Eng.  J.  51 (5), 2003 Sept–Oct 289Noise Control Eng.  J.  51 (5), 2003 Sept–Oct

B. Cylindrical wave incidence

1. Boundary with a homogeneous impedance: 
Chandler-Wilde model

     For a line source emitting a wave H0
(1) (kR1), the total field 

above the impedance surface may be expressed as H0
(1) (kR1) 

+ H0
(1) (kR2) + P

β
, P

β
= P

β
(Γ)+ P

β
(s) with:23

     
     
                                                                                          (22)
and:
                 

(23)

 in which β = ρc/Z is, as 
earlier, the normalized admittance of the surface and γ = (ys 

+ yR)/R2, yS and yR being the heights of respectively the sound 
source and the receiver above the impedance plane. This model 
is introduced here for later use when the insertion loss of a 
barrier on the ground is considered. The usual approach for this 
kind of calculation is that the total field at the receiver located 
behind the barrier, evaluated using the classical ray technique, 
is made up of four contributions, all being diffracted at the 
top of the barrier, and their different combinations result from 
considering their reflections on either side of the barrier.

2. Boundary with an impedance discontinuity

     The two-dimensional problem of sound propagation 
over an inhomogeneous ground is often solved by numerical 
techniques with appeal made to methods like Boundary 
Integral Equations. An overview on the use of such methods 
may be found in Chandler-Wilde and Hothersallʼs paper.24 In 
this paper, however, the total field is expressed as the sum of 
the direct field, the reflected field on the impedance ground 
(taking the reflection coefficient of the nearest impedance side 
as in deJongʼs model). For the diffracted wave use is made 
of the theory for the wedge with different face impedances 
considering the wedge angle to be equal to 180°. As in section 
3.A.2, in order for the efficiency of a barrier to be evaluated, 
the sound field above a two-impedance boundary needs to be 
calculated for a line source.

 
4. NUMERICAL EXAMPLES

A. Edge diffraction by a finite impedance 
wedge in free space

     The sound source being assumed linear, the field diffracted 
by the edge of the impedance wedge is calculated using Eqs 
(1-11). The results are presented in the surface plot of Fig. 4 
where the amplitude of the edge diffracted field is expressed 

as a function of the wedge angle and the flow resistivity.
     The faces of the wedge have equal impedances, and 
are evaluated according to Delany-Bazleyʼs model25 with 
the resistivities as measured by Embleton et al.26 For grass, 
the value of the flow resistivity was taken as σgrass=2.0×105 

MKS rayls whereas for earth it was σearth=6.0×105 MKS 
rayls. Although Delany-Bazleyʼs model is known to have a 
limited range of validity, and that other more elaborate models 
(several parameter models) can definitely achieve superior 
performance, see for instance Attenboroughʼs paper,27 it is 
still the subject of improvements28 and is being used as an 
acceptable approximation. The surface plot in Fig. 4 shows 
that the amplitude of the edge diffracted field increases with 
increasing impedance, and with increasing wedge angle. Note 
also the relatively strong variation of the field amplitude at low 
resistivity values and the slower rate of variation beginning 
from a value of the impedance resisitivity corresponding 
approximately to that of grass.
     Figure 5 shows the variation of the amplitude of the 
edge diffracted field with the wedge angle and for different 
frequencies. The larger the wavelength or the wedge angle, 
the larger is the amplitude of the edge diffracted field.

B. Case of a finite impedance wedge barrier on 
ground with an impedance discontinuity

     The effectiveness of a noise barrier is evaluated in terms 
of its insertion loss, IL, which is defined as the difference in 
dB of the sound pressure level at the receiver before, SPLbefore, 
and after mounting the barrier on the ground, SPLafter,

     IL= SPLbefore- SPLafter .                                                 (24)

     For the case of ground without a barrier, the total 
acoustical field at the receiver has been calculated according 
to the method described in section 3.B.2, that is the field is 
evaluated as though the angle of the wedge with different face 
impedances is equal to 180°. Figure 6 illustrates the frequency 
variation of the sound pressure level for two kinds of wedge 
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barriers, a soft one made of grass, and a hard one made of earth, 
on a ground that is asphalt-like on the source side and grass-
like on the receiver side. The values of the flow resistivities 
for grass and earth were taken as previously while for asphalt 
σasphalt=3.0×107 MKS rayls. The total pressure field at the 
receiver may be considered as the sum of four components 
represented by the wave propagation paths from the sound 
source, or its image through the ground, to the receiver, or 
its image through the ground, via the top of barrier. It may 
also be noted from the spectra of sound pressure that there is 
a lesser effect of the wedge angle on the insertion loss for the 
softer barrier towards higher frequencies, whereas the effect 
of the wedge angle is about of the same order for both barriers 
in the low frequency range. Figure 7 shows the insertion loss 
(IL) as a function of the barrier angle, and in both cases of the 
barrier, the IL is found to decrease with increasing wedge angle. 
With reference to Fig. 6, the data were considered as S(-10m, 

0.4m), R(15m, 1.8m) and H(0, 3.0m). It is also of interest to 
note the greater sensitivity of the harder barrier towards larger 
values of its angle. Moreover, the calculations show that the 
earth barrier accomplishes a performance about 1 dB to 2 dB 
less than that of the grass barrier. With reference to Fig. 5, it 
is thus possible to generalize that in terms of noise reduction 
a barrier has a better performance the thinner and the softer it 
is.
     Lastly, a comparison is made between calculating the 
IL for a line, and for a point-like sound source (see Fig. 8). 
The performance of the barrier, ideally hard in this case, is 
to some extent better when a spherical source is considered. 
The IL is also found to follow a monotonous variation 
with the wedge angle, though with a somehow stronger 
decrease for larger wedge angles. These observations are in 
agreement with the results of previous studies where the two-
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dimensional formulation was numerically solved using the 
BEM method.29

5. CONCLUSIONS

     This study was concerned with the problem of sound 
attenuation by an absorbing wedge shaped barrier on 
finite impedance ground. The model used in the numerical 
calculations is for a line source excitation. The edge diffracted 
field is given in an explicit form as a high frequency asymptotic 
expression resulting from the adoption of an exact solution to 
the case of plane wave incidence. The model is of more general 
application as the wedge barrier may be considered as having 
different boundary conditions on its faces. The present study 
however focused on a wedge with equal face impedances. The 
results of numerical computations show that the amplitude 
of the edge diffracted field increases for increasing wedge 
angle. Furthermore, the amplitude of this field also increases 
for increasing flow resistivity of the wedge impedance, and 
the harder the wedge-like barrier, the lower its sound shielding 
effectiveness. Hence, the performance of an absorbing wedge 
barrier decreases for increasing top angle and for increasing 
impedance. Similar conclusions can also be drawn for a 
hard wedged barrier and with a point-like sound source. The 
examples treated in this study may serve as guidance for the 
design of noise barriers, which to increase effectiveness are 
required to be as thin and as soft as possible.
     An improvement in the numerical predictions presented in 
this work may be achieved by considering multiple diffraction 
between the top and the base of the barrier. Indeed, for instance 
the wave diffracted at the top of the barrier may propagate 
along one of the faces of the barrier then to be diffracted at 
the base line connecting the barrier to the ground.
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