
Computational Situated Learning
in Designing

Application to Architectural Shape Semantics

by

Rabee M. Reffat

B.Arch (Hons), M.Sc. Arch. Eng.

A Thesis Submitted for the Degree of
Doctor of Philosophy

Department of Architectural and Design Science
Faculty of Architecture
University of Sydney

 Rabee M. Reffat 2000

ii

Dedication

This thesis is dedicated to the loving memory of my beloved father.
My Lord bestow your mercy on him as he cherished me in my childhood.

iii

Acknowledgments

I would like to express my sincere appreciation and gratitude to the people in the Key
Centre of Design Computing and Cognition, KCDCC, for their encouragement and
support. First, I would like to thank my supervisor Professor John S. Gero for his
continuous support in my Ph.D. program. Professor Gero introduced me to a hybrid
world of design computing, artificial intelligence and cognitive science. He taught me
how to express ideas, approach a research problem and the need to be persistent to
accomplish my goals. His patient support during the last four years helped me to bring
the research presented in this thesis to a successful conclusion.

A special thanks goes to Professor Mary Lou Maher and Dr. Mike Rosenman for their
valuable comments on the thesis proposal and to Professors Nigel Cross and Tim
Smithers for discussing my research with me during their visit to KCDCC. I would like
to thank the faculty members and staff at KCDCC especially Dr. Scott Chase, Dr.
Simeon Simoff, Paul Murty, Fay Sudweeks, Dr.Vladmir Kazakov, Dr. Masaki Suwa, Dr.
Manolya Kavakli, Joe Nappa, Doug Scoular, Andrew Winter, Anne Christian and my
colleagues Dr. Jose Damski, Dr. Josiah Poon, Dr. Thorsten Schnier, Dr. Anna
Cicognani, Dr. Lan Ding, Dr. Soohoon Park, Dr. Andres Gomez, Philip Tomlinson, Katy
Bridge, Gourabmoy Nath, Gerard Gabriel, Guang Shi, Jaroslaw Kulinski, Robert
Saunders, Fei Li, Hsien-Hui Tang, Chin Chin Kau, Eonyong Kim, Ellina Yukhina, Justin
Clayden, Greg Smith and Stephen Clarke. I am grateful for the financial support of both
the Key Centre of Design Computing and Cognition and the University of Sydney
scholarships. My enormous appreciation belongs to Dr. Edward L. Harkness for
proofreading and reviewing the English in this thesis.

The heart of my dedication belongs to my beloved family: my mother, brothers and
sisters, my wife and my son for the depth of their love. I am indebted to my wife who
devoted her life to our small family lovingly and willingly. The presence of my family and
my circle of friends, new and old, near and far, provided me with passion, support and
identity.

iv

Summary

Learning the situatedness (applicability conditions), of design knowledge recognised
from design compositions is the central tenet of the research presented in this thesis. This
thesis develops and implements a computational system of situated learning and
investigates its utility in designing. Situated learning is based on the concept that
"knowledge is contextually situated and is fundamentally influenced by its situation". In
this sense learning is tuned to the situations within which "what you do when you do
matters". Designing cannot be predicted and the results of designing are not based on
actions independent of what is being designed or independent of when, where and how it
was designed. Designers' actions are situation dependent (situated), such that designers
work actively with the design environment within the specific conditions of the situation
where neither the goal state nor the solution space is completely predetermined. In
designing, design solutions are fluid and emergent entities generated by dynamic and
situated activities instead of fixed design plans. Since it is not possible in advance to
know what knowledge to use in relation to any situation we need to learn knowledge in
relation to its situation, ie learn the applicability conditions of knowledge. This leads
towards the notion of the situation as having the potential role of guiding the use of
knowledge.

Situated Learning in Designing (SLiDe) is developed and implemented within the
domain of architectural shape composition (in the form of floor plans), to construct the
situatedness of shape semantics. An architectural shape semantic is a set of
characteristics with a semantic meaning based on a particular view of a shape such as
reflection symmetry, adjacency, rotation and linearity. Each shape semantic has
preconditions without which it cannot be recognised. Such preconditions indicate
nothing about the situation within which this shape semantic was recognised. The
situatedness or the applicability conditions of a shape semantic is viewed as, the
interdependent relationships between this shape semantic as the design knowledge in
focus, and other shape semantics across the observations of a design composition. While
designing, various shape semantics and relationships among them emerge in different
representations of a design composition. Multiple representations of a design
composition by re-interpretation have been proposed to serve as a platform for SLiDe.
Multiple representations provide the opportunity for different shape semantics and
relationships among them to be found from a single design composition. This is
important if these relationships are to be used later because it is not known in advance
which of the possible relationships could be constructed are likely to be useful. Hence,
multiple representations provide a platform for different situations to be encountered. A
symbolic representation of shape and shape semantics is used in which the infinite
maximal lines form the representative primitives of the shape.

SLiDe is concerned with learning the applicability conditions (situatedness), of shape
semantics locating them in relation to situations within which they were recognised
(situation dependent), and updating the situatedness of shape semantics in response to

v

new observations of the design composition. SLiDe consists of three primary modules:
Generator, Recogniser and Incremental Situator. The Generator is used by the designer
to develop a set of multiple representations of a design composition. This set of
representations forms the initial design environment of SLiDe. The Recogniser detects
shape semantics in each representation and produces a set of observations, each of which
is comprised of a group of shape semantics recognised at each corresponding
representation. The Incremental Situator module consists of two sub-modules, Situator
and Restructuring Situator, and utilises an unsupervised incremental clustering
mechanism not affected by concept drift. The Situator module locates recognised shape
semantics in relation to their situations by finding regularities of relationships among
them across observations of a design composition and clustering them into situational
categories organised in a hierarchical tree structure. Such relationships change over time
due to the changes taken place in the design environment whenever further
representations are developed using the Generator module and new observations are
constructed by the Recogniser module. The Restructuring Situator module updates
previously learned situational categories and restructures the hierarchical tree
accordingly in response to new observations.

Learning the situatedness shape semantics may play a crucial role in designing if
designers pursue further some of these shape semantics. This thesis illustrates an
approach in which SLiDe can be utilised in designing to explore the shapes in a design
composition in various ways; bring designers' attention to potentially hidden features and
shape semantics of their designs; and maintain the integrity of the design composition by
using the situatedness of shape semantics. The thesis concludes by outlining future
directions for this research to learn and update the situatedness of design knowledge
within the context of use; considering the role of functional knowledge while learning the
situatedness of design knowledge; and developing an autonomous situated agent-based
designing system.

Contents

Acknowledgments iii
Summary iv
Contents vi
List of Figures ix
List of Tables xiii

Chapter 1 Introduction 1
1.1 Motivation 2
1.2 Aims and Objectives 5
1.3 Scope and Limitations 8
1.4 Organisation of the Thesis 8

Chapter 2 Background 9
2.1 Designing and Situatedness 9

2.1.1 Designing: rationality vs. reflection-in-action 9
2.1.2 Designing actions: planned vs. situated 10
2.1.3 The situated view of cognition/action 11
2.1.4 Designing as a situated activity 12

2.1.4.1 Situatedness in designing 13
2.1.4.2 Situated versus procedural and declarative knowledge 14

2.2 What is the "situation" and how it is constructed? 15
2.3 Situated Learning 17

Context-sensitive learning as related to situated learning 18
2.4 Machine Learning in Designing 19

Learning systems in designing 20
2.5 Situated Learning in Designing 24

2.5.1 Incremental learning systems in designing 26
2.5.2 Accommodating the situatedness within computational systems in

designing 27

Chapter 3 Multiple Representations: A Platform for Situated
Learning in Designing 29

3.1 Multiple Representations while Designing 30
3.2 Multiple Representations of an Architectural Shape 34

3.2.1 Initial representation of a shape 34
3.2.2 Development of multiple representations 37

3.2.2.1 Unbounded n-sided subshapes representations 39
3.2.2.2 Bounded n-sided subshapes representations 41
3.2.2.3 Emergent shapes 42
3.3.2.4 Figure and ground 44

3.3 The Role of Multiple Representations in Situated Learning in Designing 46

vii

Chapter 4 Situated Learning of Architectural Shape Semantics 49
4.1 Shape Semantics in Architectural Drawings 49

4.1.1 Selection of shape semantics 50
4.1.2 Recognising various shape semantics from multiple representations 53

4.2 Recognition of Shape Semantics 53
4.2.1 Recognition of shape semantics indicating symmetry 54

4.2.1.1 Reflective symmetry around an axis 54
4.2.1.2 Reflective symmetry around multiple axes 54
4.2.1.3 Simple rotation 55
4.2.1.4 Cyclic rotation 55
4.2.1.5 Translational repetition 56
4.2.1.6 Scaling 57

4.2.2 Recognition of shape semantics indicating expression 57
4.2.2.1 Adjacency 57
4.2.2.2 Dominance 57

4.2.3 Recognition of shape semantics indicating modality 58
4.2.3.1 Centrality 58
4.2.3.2 Radiality 58
4.2.3.3 Linearity 59

4.3 Constructing Observations from Multiple Representations 60
4.4 Situated Learning of Shape Semantics 60

4.4.1 Constructing the situatedness of shape semantics 60
4.4.2 Duality between knowledge in focus and the situation 62
4.4.3 Learning multiple situations for a certain knowledge in focus 65
4.4.4 Preconditions vs. Situatedness of Shape Semantics 66

Chapter 5 A Computational System for Situated Learning in
Designing (SLiDe) 67

5.1 Framework for Situated Learning in Designing 67
5.2 Multiple Representations using the Generator Module 70
5.2 Shape Semantics Recognition using the Recogniser Module 72
5.4 Locating Shape Semantics in relation to their Situations using the Incremental

Situator Module 75
5.4.1 An overview of clustering mechanisms 76
5.4.2 Features of the Incremental Situator 77

5.4.2.1 Unsupervised incremental learning 77
5.4.2.2 Clustering and learning 78
5.4.2.3 Hierarchical tree structure of situational categories 79
5.4.2.4 Manipulation of concept drift 79

5.4.3 Illustration of how the Incremental Situator works 82

Chapter 6 Application of SLiDe 84
6.1 Introduction 84
6.2 Selection of an Architectural Design Composition 85
6.3 Development of Multiple Representations 85

viii

6.4 Constructing a set of Observations from the Developed set of
Representations 89

6.5 Learning the Situatedness of Recognised Shape Semantics 91
6.6 Incremental Learning about the Situatedness of Shape Semantics 93
6.7 Discussion 101

Chapter 7 SLiDe in Architectural Designing 103
7.1 Introduction 103
7.2 Enhancing the Perceptual Interaction with the Design Composition 104
7.3 Exploring various alternatives in the design space 108
7.4 Maintaining the Integrity of Desired Design Concepts while Designing 108

7.4.1 Maintaining the integrity of design concepts in response to addition of
shapes 112

7.4.2 Maintaining the integrity of design concepts in response to substitution
of shapes 114

7.5 Discussion 116

Chapter 8 Conclusion 117
8.1 Objectives and Results 117
8.2 Contributions 118
8.3 Future Work 121

8.3.1 Situated learning within the context of use while designing 121
8.3.2 Considering the role of functional knowledge while learning the

situatedness 122
8.3.3 Using SLiDe within an autonomous situated agent-based designing

system 123

References 125
Appendix A 137

Recognising various Shape Semantics using the Recogniser module of SLiDe 137
Appendix B 139

The fourth set of representations developed using the Generator module of
SLiDe 139

Appendix C 141
The fifth set of representations developed using the Generator module of
SLiDe 141

Appendix D 144
Abstracts of Papers Published from the Research in this Thesis 144

ix

List of Figures

Figure 2.1 (a) and (b) show only single dark human-like heads at some time; (c) it is only
when the situation exists when both heads appear at the same time facing each
other, that the emergent vase appears; and at (a) and (b) different situations have
arisen and therefore no emergent vase can be found; (d) shows a new situation
where the designer chooses to reflect the image in (c), it is only then that a new
emergent shape (decorative arch), appears in the middle between the two vases;
in addition to the emergence of a reflective symmetry relationship between the
two vases (after Gero, 1998). 14

Figure 2.2 An example of situation. The same stimulus is perceived as an H or an A
depending on the situation (after Solso, 1996). 16

Figure 3.1 Look at the display of triangles, in which directions do they point? Can you
perceive the direction differently? (Solso, 1997). 32

Figure 3.2 (a) Image of a square, (b) some of the possible representations of a square. 33
Figure 3.3 Various descriptions of Villa Capra, Vicenza, Italy (Clark and Pause, 1996). 33
Figure 3.4 Some of the possible representations that might be interpreted by the using the

platform proposed in this thesis: (a) lines, (b) blocks, (c) reflected components,
(d) rotated components, (e) centrality and (f) background/foreground. 34

Figure 3.5 The outline of the entries and the hexagon hall of the Sepulchral Church, Sir
John Soane, 1796, (Jun, 1997). 36

Figure 3.6 Symbolic representation using infinite maximal line, la to ln, as representational
primitives. 36

Figure 3.7 Labelling line segments with x1, x2 and x3 based on similarity measurements. 37
Figure 3.8 Different processes of developing multiple representations of a single shape. 38
Figure 3.9 Two representations, N1 and N2, of unbounded two-sided subshapes; (a) and (c)

have the same description of the representation N1; (b) and (d) have the same
description of the representation N2. 39

Figure 3.10 Four representations, N3 to N6, of bounded three-sided sub-shapes. 40
Figure 3.11 Four representations, N7 to N10, of unbounded four-sided subshapes. 40
Figure 3.12 Five representations, N11 to N15, of unbounded five-sided subshapes. 40
Figure 3.13 An example of a representation N16 consisting of bounded four-sided subshapes. 41
Figure 3.14 An example of a representation N17 consisting of bounded four-sided subshapes

and the remaining part of the initial shape. 42
Figure 3.15 Two representations N18 and N19 are mixtures of bounded three and four-sided

subshapes. 42
Figure 3.16 Seven representations from N20 to N26 include emergent shapes as a result of an

emergence process. 44
Figure 3.17 Figure and ground perception after (Bruce et al., 1996). 45
Figure 3.18 Figure and ground representation using the outermost convex hull method 45
Figure 3.19 Figure and ground representation using the standard convex hull method. 45
Figure 4.1 Three sets of shape semantics are selected to be recognised from architectural

design compositions. 51
Figure 4.2 Examples of shape semantics representing architectural expressions among

shapes within design compositions (a) adjacency and (b) dominance. 51
Figure 4.3 Examples of shape semantics representing congruence among parts of design

compositions: (a) reflective symmetry around an axis, Erdman Hall Dormitory,
Bryn Mawr by Louis I. Kahn; (b) reflective symmetry around multiple axes,
National Assembly Hall in Dacca by Louis I. Kahn; (c) and (d) closed cyclic
rotation, Price Tower, Bartlesville by Frank Lloyd Wright; (e) scaling, Holy
Trinity Ukrainian Church by Radoslav Zuk; (f) translational repetition, Richards
Medical Research Building, Philadelphia by Louis I. Khan; and (g) scaling,
Wolfsburg Cultural Centre by Alvar Aalto. 52

x

Figure 4.4 Examples of shape semantics representing the enclosure among shapes: (a)
linearity; (b) radiality, Row house in Jakobstad by Alvar Aalto; and (c)
centrality, Trenton Bath House by Louis I. Khan. 52

Figure 4.5 Recognition of different shape semantics from multiple representations of the
same design composition. 53

Figure 4.6 An example of two congruent shapes Sx and Sy where there are three vertices in
each shape (iab, ibc and ica) and (imn, ino and iom); the lengths of corresponding
edges are equal, la = lm, lb = ln and lc = lo; the angles at corresponding vertices
are equal; A(la, lb) = A(lm, ln), A(lb, lc) = A(ln, lo) and A(lc, la) = A(lo, lm); and
the ratios of each two consecutive edges are equal, la | lb = lm | ln , lb | lc = ln | lo
and lc | la = lo | lm. 54

Figure 4.7 An example of reflective symmetry (Mr) between two congruent shapes Sx and
Sy around an axis lz where l1 // l2 // l3 and their slope is zero, lz joining midpoints
of l1, l2 and l3 is a straight line, and lz ⊥ l1, lz ⊥ l2 and lz ⊥ l3. 54

Figure 4.8 An example of multiple reflective symmetry (Mt) around two axes lz and lw
where each of the congruent shapes Sx, Sy, Sv and Su is reflected around both of
them and lz ⊥ lw. 55

Figure 4.9 An example of simple rotation (Rs) between two congruent shapes Sx and Sy
around a rotation centre point irc. 55

Figure 4.10 An example of cyclic rotation (Rn) between four congruent shapes Sx, Sy, Sv and
Su around the same rotational centre point irc with the same rotational angle 90o. 56

Figure 4.11 An example of translational repetition (Pr) between three congruent shapes Sx,
Sy and Sv around translational line lz with the same translational distance X1. 56

Figure 4.12 An example of scaling (Es) between two shapes Sy and Sv
where la / ld = lb / le = lc / lf. 57

Figure 4.13 Examples of different kinds of adjacency (Ad) among shapes. 57
Figure 4.14 Examples of dominance (Dm) among contiguous and non-contiguous shapes in

(a) and (b) respectively. 58
Figure 4.15 Examples of centrality (Dm) of a shape in some design compositions. 58
Figure 4.16 Examples of radiality (Tr) among congruent shapes. 59
Figure 4.17 Examples of linearity (Ls) among (a) scaled congruent shapes or (b) congruent

shapes. 59
Figure 4.18 A learned regularity across the observations O17, O22, O23 and O27. If k1,

centrality (Ce) is chosen to be the knowledge in focus, then k2, k3, k4 and k5
form its situation t1. 62

Figure 4.19 An example of the duality between knowledge in focus and parts of its situation
within the same regularity. 63

Figure 4.20 Another possible situation of k1, which refers to centrality (Ce) constructed from
the second regularity when it is considered as the knowledge in focus F1. The
duality between knowledge in focus F4 and its situation within this regularity is
shown. In this Figure, Figure 4.19 is illustrated in a dropped tone. 64

Figure 4.21 An example of applying the duality to construct two of the possible situations, t2
and t201, of reflective symmetry (Mr) around one axis within the two learned
regularities. 64

Figure 4.22 Four regularities are found across the set of observations shown in Table 4.1
within which the situations t3, t301, t302 and t3o3 are constructed in relation to k3
which refers to cyclic rotation (Rn) when considered as the knowledge in focus. 65

Figure 5.1 The overall framework of the computational system for situated learning in
designing (SLiDe). 69

Figure 5.2 The Process model of the Generator module to develop multiple representations. 70
Figure 5.3 Learning operators used to modify the structure of a hierarchy of probabilistic

clustering: (a) extending the hierarchy downward; (b) creating a disjunct at an
existing level; (c) merging two existing classes; and (d) splitting an existing
category. Newly created nodes are shown in grey (Iba and Langley, 1999). 81

xi

Figure 5.4 A hierarchical tree constructed by the Situator module. 83
Figure 5.5 A revised hierarchical tree constructed by the Restructuring Situator module. 83
Figure 5.6 A revised hierarchical tree constructed by the Restructuring Situator module. 83
Figure 6.1 An example of architectural design composition: The Exter Library, in the form

of a floor plan, designed by Louis Khan in New Hampshire (Clark and Pause,
1996). 85

Figure 6.2 (a) Scanned architectural design composition in Figure 6.1 is imported in
AutoCAD, (b) a simplified design composition is drawn by the designer (user) in
AutoCAD and serves as an initial representation. 86

Figure 6.3 (a) Selected frame drawn by the designer around the design composition, (b)
infinite maximal lines of the design composition produced by the Generator
module. 86

Figure 6.4 The Generator module produces: (a) dimensional and geometrical constraints of
the selected shape, (b) highlighting the selected shape by the designer, and (c)
first developed representation (N1). 87

Figure 6.5 (a-b) A set of multiple representations developed using the Generator module
through the interaction with the designer to select shapes of interest: (a) and (b)
show the representations N2 and N3. 87

Figure 6.5 (c-g) A set of multiple representations developed by the Generator module
through the interaction with the designer to select shapes of interest: from (c) to
(g) show the representations from N4 to N9 respectively. 88

Figure 6.6 An example of reflective symmetry (Mr) around an axis found by the Recogniser
module in the representation N8. 89

Figure 6.7 Examples (a) and (b) of cyclic rotation (Rn) found by the Recogniser module in
the representations N1 and N3. 90

Figure 6.8 Two situational categories Cs1 and Cs2 learned by the Incremental Situator
module from the set observations constructed by the Recogniser module as
shown in Table 6.1; (a) shows a summary description of the regularity of
relationships among shape semantics across some observations; (b) shows an
observation composed of a group of shape semantics recognised from a
representation. 91

Figure 6.9 An example of the duality between knowledge and situation within the
situational category Cs2. 92

Figure 6.10 An example of the duality between knowledge and situation within the
situational category Cs1. 92

Figure 6.11 A second set of representations developed using the Generator module with the
interaction of the designer to select other shapes of interest: (a) and (b) show the
representations N10 and N11. 93

Figure 6.12 A newly learned situational category Cs3 emerged in response to the second set
of observations. 94

Figure 6.13 Newly learned situational category Cs3 and an example of the duality among its
entities, knowledge in focus and its situation. 95

Figure 6.14 interaction with the designer to select other shapes of interest: (a) to (d) show
the representations form N12 to N15. 95

Figure 6.15 Two new learned situational categories Cs4 and Cs5 emerged in response to the
third set of observations. 96

Figure 6.16 An overall restructuring of the hierarchical tree structure wherein situational
categories Cs6 and Cs7 emerged and *Cs4 is reinforced (shown dotted), in
response to the fourth set of observations shown in Table 6.4. 98

Figure 6.17 Reconstructing a previously learned situational category Cs1(a) (shown dashed);
reinforcing *Cs2 and *Cs3 (shown dotted); and creating a new situational
category Cs8 in response to the most recent (fifth), additional set of observations
shown in Table 6.5. 98

Figure 6.18 (a) and (b) Snapshots of the hierarchical tree structure constructed from the first
set of observations using the Situator module shown in a vertical and a

xii

horizontal direction respectively and (c) some statistics about this hierarchical
tree structure. 99

Figure 6.19 (a) shows the result of updating what had been learned and restructuring the
hierarchical tree accordingly in response to the fifth set of observations and (b)
shows some statistics about the updated hierarchical tree structure in which
merging occurs between situational categories. 100

Figure 6.20 Zooming in within the graph to see the description of the observations and their
category. 101

Figure 6.21 Three types of situational categories: constructed, reinforced and reconstructed,
within the group of learned situational categories from the five sets of
observations constructed from 39 representations of the design composition. 102

Figure 7.1 Conversion of a design sketch to a vectorised version that can be handled by
CAD systems. 104

Figure 7.2 A framework for enhancing the perceptual interaction with the design
composition. 105

Figure 7.3 (a) initial design composition; (b) the result of using the Recogniser module to
detect shape semantics in the initial design composition 106

Figure 7.4 (a) the design space in the form of the intersections of infinite maximal lines of
the initial design composition within the frame drawn by the designer; (b) a
selected shape by the designer to be used in searching the design space for other
congruent shapes that satisfy cyclic rotation; (c) a group of congruent shapes
among which cyclic rotation is recognised; (d), (e) and (f) other examples of
congruent shapes that satisfy the designer's interest in cyclic rotation. 107

Figure 7.5 Part I: Framework of exploring various alternatives in the design space and Part
II: Framework of maintaining the integrity of desired design concept, shape
semantic of interest, by preserving both of its necessary and applicability
conditions. 109

Figure 7.6 Various alternatives from exploring the design space of the initial design
composition using the Generator module, from (a) to (f) show the
representations N1 to N6. 110

Figure 7.7 The result of using the Incremental Situator module in SLiDe to learn the
applicability conditions of recognised shape semantics across the observations
wherein two situational categories Cs1 and Cs2 are learned. 111

Figure 7.8 (a) A new move that a designer selected from the developed representations to
further pursue in designing, (b) a new space added by the designer at a later
stage, (c) SLiDe-CAAD could help in maintaining the integrity of cyclic rotation
via preserving its necessary conditions, and (d) SLiDe-CAAD could help in
maintaining the situatedness of cyclic rotation via preserving its applicability
conditions, eg. adjacency and centrality. 113

Figure 7.9 (a) Substituting one of the existing shapes (S1) with a new shape (S4), (b)
maintaining the cyclic rotation via preserving the congruency among shapes and
substituting each of (S1) with (S4). 114

Figure 7.10 (a) Joining and modifying two of the existing shapes (S1) to form a new shape
(S5), (b) and (c) the expected results of changing the shape semantic of interest
from cyclic rotation to reflective symmetry and simple rotations respectively. 115

Figure 8.1 An initial framework of SLiDe’s possible further development to learn within
the context of use while designing. 122

Figure 8.2 An initial framework of an autonomous agent-based designing system. 124

xiii

List of Tables

Table 2.1 (a) Overview of learning systems in designing. 21
Table 2.1 (b) Overview of learning systems in designing. 22
Table 2.1 (c) Overview of learning systems in designing. 23
Table 2.2 Dimensions of machine learning in designing. 25
Table 3.1 Concise syntax of a set of some possible representations from the initial

representation shown in Figure 3.7. 46
Table 4.1 A set of observations constructed from the multiple representations developed

from a design compositions as shown in Section 3.2.2. 61
Table 4.2 An example of centrality (Ce) as knowledge in focus and its situation across the

set of observations. 62
Table 4.3 An example of the duality between knowledge in focus and parts of its situation

within the same regularity. 63
Table 5.1 The algorithm used to alter the structure of the clustering's hierarchy (Gennari et

al., 1989). 80
Table 5.2 An extended control algorithm (read-evaluate-learn-trim) using the queue of

observations (Kilander and Jansson, 1993). 82
Table 6.1 The first set of observations produced using the Recogniser module to detect

shape semantics in the developed representations shown in Figures 6.4 and 6.5. 90
Table 6.2 The second set of observations produced using the Recogniser module to detect

shape semantics in the generated representations shown in Figure 6.11. 93
Table 6.3 The third set of observations produced using the Recogniser module to detect

shape semantics in the generated representations shown in Figure 6.14. 96
Table 6.4 The fourth set of observations produced using the Recogniser module to detect

shape semantics in the generated representations shown in Appendix B. 97
Table 6.5 The fifth set of observations produced using the Recogniser module to detect

shape semantics in the generated representations shown in Appendix C. 97
Table 7.1 A set of observations produced using the Recogniser module to detect shape

semantics in the developed representations shown in Figures 7.6. 111

Chapter 1

Introduction

This chapter presents a brief prologue; introduces the motivation; outlines the aims and
objectives of the research presented in this thesis; presents an overview of the scope; and
concludes with a brief outline of the chapters that follow.

In this thesis, the word "designing" is used to refer to the activity of making designs and
"design" refers to the product of designing. In designing, the problem is ill-defined
whereby design actions are not based on performing a complete plan or a program that is
given a priori or at the beginning of designing. All relevant information cannot be
predicted and established in advance of the design activity. The directions that are taken
during the exploration of the design territory are influenced by what is learned along the
way and the partial glimpses of what might lie ahead (Cross, 1999). In designing, both
the problem and solution spaces co-evolve, constantly being revised. The focus of
attention shifts back and forth from defining the problem to solving the problem.
Designing involves making decisions and even making decisions about decisions, ie what
actions to execute first. Furthermore, the result of designing is not based on actions
independent of what is being designed or independent of when, where and how it is being
designed.

The empirical approach of design studies looks carefully at a specific design process
aimed at understanding design activities in terms of actions and decisions taken. In these
decisions the process and content of the design process are often inextricably linked.
Schön (1983) based on his experiment with a particular example of architectural design
explored designing as a "conversation with the materials of the situation" where the
design process is viewed as reflection-in-action where designers deal with situations.
Suwa et al (1998b) from a macroscopic analysis of design processes based on a scheme
for coding designers' cognitive actions concluded that “sketches serve as a physical
setting in which design thoughts are constructed on the fly in a situated way”. These
results coincide with the views of Agre and Chapman (1987) and Kirsh (1995) in which
people act not just in goal-oriented or knowledge-intensive ways, but more often in
response to visuo-spatial features of the physical setting they are in. From another
cognitive perspective, Gedenryd (1998) perceived designers' actions as situation
dependent (situated), such that designers work interactively with the design environment
within the specific conditions of the situation. Gero (1998a) viewed conceptual designing
as a sequence of situated acts. Most recently, tools from cognitive science have started

Chapter 1: Introduction 2

to provide insights into human designing (Lawson, 1980; Akin, 1986; Cross et al., 1996;
Gedenryd, 1998; Morrison, 1998; Lueg, 1999).

Artificial intelligence in design is aimed at supporting designing through developing
systems or tools that either aid designers or emulate designing, that is, developing
autonomous designing tools. Knowledge of the human designer's cognitive behaviour
obviously is of fundamental importance, because the users of such tools (designers),
must be able to use them in ways that are cognitively comfortable. So the systems must
be designed on the basis of models of the cognitive behaviour of the systems’ users
(Cross, 1999).

1.1 Motivation

There are three primary contributions that motivated the research presented in this thesis:
situatedness of designing, situatedness of learning and the role of situatedness in learning
in designing.

• Situatedness of designing

Design cannot be predicted and the designer has to be ‘at a particular set of states’ in
order to decide what to do. The acquisition of design knowledge is not a stored body of
data, but rather a capability constructed in action within the situation. This leads us
towards the notion of situation as having the potential role of guiding the use of
knowledge and designing as a situated and dynamic activity. Since it is not possible to
know beforehand what knowledge to use in relation to any situation we need to learn
knowledge in relation to its situation. The central idea of situated cognition is that in
order to function efficiently, the brain needs not only the body but also the surrounding
environment. Situatedness (Clancey, 1997b) acknowledges that "where you are when
you do what you do matters". The implication of this view is that actions are interrelated
to their locus and application. Much of artificial intelligence in designing had been based
on the view of knowledge being unrelated to either its locus or application (Gero, 1999).
Similarly, the vast majority of machine learning approaches and applications in designing
have made the implicit assumption that "what has been learned is potentially universally
applicable". This assumption can be restated as "the context within what is learned plays
no role" (Gero, 1998b). On the contrary, situatedness in designing is concerned with
locating design knowledge in relation to its situation within the design environment. One
of the important characteristics of situatedness in designing is the dynamic change in the
design context while designing. The whole design context constitutes the design
environment and for a specific knowledge in focus the active and immediate part of that
context (the situation), plays a significant role.

The situatedness of an object acts as an operator that locates knowledge in relation to its
situation. For instance, consider the difference between a table in an office space and one
in a dining room. A table placed in an office space has different relationships to its
surroundings than the one placed in a dining room. In an office space there are
relationships between the table and filing cabinets, drawers, desk lamp, computer, chairs
and their arrangement that structure this table in relation to its surroundings to be

Chapter 1: Introduction 3

recognised as a desk or an office table. On the other hand, in a dining room the
relationships between the table (although it might be the same object), certain objects in
its surroundings and the arrangement of chairs around it make it considered to be a
dining table. So, for a system to locate such an object in relation to its situation it needs
to learn the regularities of its relationships to its surroundings within which it was
recognised.

Design context, ie situations, are embedded in design drawings (Do, 1998). Drawings
provide architects with a medium to express their design concepts (Robbins and
Cullinan, 1994). In architectural drawings, shapes are fundamental to the act of
designing. Designers express ideas and represent elements of design using shapes,
abstract concepts and construct situations. Shapes denote edges and boundaries of
spaces, building elements or abstract concepts. Hence, their role in designing is
significant. In architectural design, as in many other design disciplines, shape
composition is an important design activity. The formation and discovery of relationships
among parts of a composition are fundamental tasks in designing (Mitchell and
McCullough, 1995; Kolarevic, 1997). The relationships among shape parts can be
geometrical or non-geometrical in nature. These relationships are called shape semantics.
An architectural shape semantic is a set of characteristics with a semantic meaning based
on a particular view of a shape such as reflective symmetry, rotation, repetition and
adjacency. The relationships among shape semantics are reflections of designers' situated
actions that led to different shape compositions. For a learning system to locate these
shape semantics in their situations it should be capable of learning the regularities of
relationships among these shape semantics from its own observations of the design
composition.

The act of designing is intrinsically dynamic in which design concepts and situations are
constantly evolving. Hence, various relationships among shape semantics emerge in
different representations during the process of designing. As designers draw and see
what they have drawn, they make discoveries. They discover features and relations that
cumulatively generate a fuller understanding of the configuration with which they are
working. Different moves of the designers can yield an understanding of relationships,
consequences and qualities of the design (Schön and Wiggins, 1992). Multiple
representations through re-interpretations of designs could help in making some shape
semantics that were implicit to be explicit. This contributes to constructing new
observations of the design composition by recognising the shape semantics that were not
explicitly recognisable in the previous representations. The notion of multiple
representations from a single shape fits well here to provide a system with the
opportunity to recognise different shape semantics and relationships among them from
the image of an external representation, eg a drawing of an architectural plan. This is
important if these relationships are to be used later since it is not known in advance
which of the possible relationships that could be formed are likely to be useful. Hence,
multiple representations provide a platform for different relationships to be encountered.
The regularities of relationships among these recognised shape semantics across different
observations are the entities that constitute different design situations.

Intuitively, the notion of "environment" in AI refers to the relatively enduring and stable
set of circumstances that surround an agent. The environment is where an agent lives and

Chapter 1: Introduction 4

influences its actions (Agre and Horswill, 1997). Since the focus of this thesis is system-
based rather than agent-based, the definition of the "environment" refers to the internal
model constructed by the system within which to learn. The initial set of representations
developed by the system constitutes its design environment and changes take place in the
environment whenever further representations are generated. So, it is a kind of internal
environment within which the system recognises shape semantics. The system constructs
its own set of observations and locates shape semantics in relation to their situations
encountered from this environment. Changes in the environment give rise to the learning
system to change its own observations and its behaviour accordingly. The system
dynamically updates the situatedness of its learned knowledge either by refining the
learned situation or constructing new situations to accommodate the changes in the
environment.

• Situatedness of learning in designing

All learning occurs in context, ie situation (Balsam, 1985). The term context means the
general conditions or circumstances in which an event takes place (Akman and Surav,
1996). Learning occurs in a context that is defined by specific features of the task at
hand. These features make the learning context-sensitive. Many learning applications
necessitate the use of context in learning (Matwin and Kubat, 1996). Learning systems
that can both identify and manage the context will have a substantial advantage over a
system that can manage context but requires a human operator to identify context
(Turney, 1996). Learning and designing are closely related activities. Designers learn
when they encounter knowledge that is sufficiently different from their present state of
knowledge (Persidis and Duffy, 1991; Duffy and Duffy, 1996b). Learning in designing
can be viewed as acquiring knowledge associated with its situatedness and learning is
incremental and evolutionary, involving internal adjustment. Situation is conceived as the
immediate context for the acquisition of that knowledge from the environment. What
makes one situation different from or similar to others are the relationships that allow
relevant distinctions to be made among situations.

Situated learning in designing takes as its focus the relationships between knowledge and
the situation within which it occurs. Situated learning joins a growing literature in
cognitive studies, discourse analysis and sociolinguistics where the common element is
the premise that learning is defined relative to context, not self-contained structures
(Lave and Wenger, 1991). The conception of situated learning is more encompassing in
intent than conventional notions of learning in situ or learning by doing. Lave and
Wenger (1991) explored learning as "legitimate peripheral participation" where
peripherality is a positive term, whose most salient conceptual antonyms are un-
relatedness or irrelevance to ongoing activity. The implication of situated learning in
designing is that what is learned and experienced depends on the situation and the
situation is not simply a variable to be manipulated, but it is constructed in an interactive
ongoing manner.

• The role of situatedness in learning in designing

The concept of situatedness within learning and designing could be applied in developing
a computational system for situated learning in designing by learning the relationships

Chapter 1: Introduction 5

between design knowledge and its situation and responding to the changes that take
place in its environment.

In designing, knowledge is composed such that subsequent experiences categorise what
was experienced before. How it is categorised depends on the ongoing sequence in
which it becomes a part and its appropriateness is determined by constraining the domain
in which categorisation occurs. The categorisation of the relationships among design
knowledge (shape semantics), is based on the regularities in the design environment.
Such regularities of relationships form the ground to situate that knowledge. The view of
situated learning in designing is concerned with finding the regularities of relationships
among shape semantics in relation to the situation within which they were recognised
and construct the categories or clusters that accommodate these regularities. The learned
categories carry with them notions of the applicability conditions of knowledge derived
from the situation. These applicability conditions (situatedness) are then modified over
time as changes take place in the design environment.

The approach of situated learning in designing has the prospect for making the
computational-learning situation-dependent and not context free or universally
applicable. The dependency on the situation (situatedness), implies the acquisition of the
design knowledge within which it was recognised. This denotes the possibility of
changing what has been learned depending on the encountered situations. The change is
in the sense that the learning outcome, after modifying or changing the environment, is
not constant. This would provide designers with systems that reflect the concept of
designing as not being predetermined but dynamic. This would broaden the view for
designers about the design environment and potentially guide the use of knowledge.

1.2 Aims and Objectives

The main goal of this thesis is to develop an approach to situated learning in designing in
which computers will have the capability to learn design knowledge including concepts
of its situatedness. This computational approach for situated learning in designing is
implemented in a system called SLiDe (Situated Learning in Designing). SLiDe is a
system that locates knowledge to its locus and application and modifies the situatedness
of knowledge as its design environment changes. SLiDe has the capability to recognise
various contexts in which it is potentially situated. SLiDe structures its encountered
situations and classifies them into categories in a hierarchical structure tree. These
categories carry with them the applicability conditions of design knowledge derived from
the situation. SLiDe is implemented and exemplified within the domain of architectural
shape semantics. SLiDe could be integrated into conventional CAD systems within the
domain of designing architectural shape composition (SLiDe-CAAD), to provide
interactive designing support at the conceptual stages. Four major objectives are to be
achieved through the development of this thesis:

(a) To develop multiple representations from an external representation of a design
composition (floor plan), to constitute the design environment within which SLiDe
is to learn the situatedness of design knowledge. Put differently, to develop a
platform for a situated learning system in designing.

Chapter 1: Introduction 6

This objective can be achieved by using infinite maximal lines to represent the shape
of a design composition. Commencing with an initial representation of a shape in
the form of line segments, these line segments are re-represented in the form of their
infinite maximal lines (Gero, 1992b; Gero and Yan, 1993). The intersections of the
infinite maximal lines define the design space to be searched. Then the designer
selects a shape of interest from among the intersections of infinite maximal lines and
the design space is searched for shapes that correspond to the selected shape
(without allowing for overlapping shapes while searching). If corresponding shapes
are found, a new representation is developed from the combination of both
corresponding shapes and the contours of the initial shape. If no corresponding
shapes are found in the design space, a representation is generated from both the
selected shape and the leftover of the initial shape. Using this approach, a set of
multiple representations can be developed through multiple selections of different
shapes of interest.

(b) To learn about shape semantics in relation to their situations. Constructing the
situatedness of shape semantics through learning the regularities of the
relationships among them cross the observations constructed from the design
environment.

This objective can be achieved by recognising shape semantics at each
representation and constructing a set of observations for the corresponding
representations. Shape semantics recognition starts from the identification of shape
congruency and structural shape similarities (Cha, 1998). Each shape semantic has
preconditions, necessary and sufficient, without which it will not be recognised in a
design space. An observation is constructed from the group of shape semantics
recognised from a representation of the design composition. The regularities of
relationships among shape semantics across a set of observations help in
constructing the situatedness of these shape semantics and locate them in relation to
their situations in the design environment.

(c) To implement a computational system that has the capability to: generate multiple
representations; recognise shape semantics from the representations; construct
observations; construct the situatedness of recognised shape semantics; and
dynamically change what has been learned in response to the changes in the
environment.

This can be achieved by developing a computational system for situated learning in
design called SLiDe. Its role is to locate design knowledge (shape semantics), in
relation to its design situation by learning the regularities of relevant relationships
among the shape semantics across observations from the environment, ie. learning
the applicability conditions (situatedness), of design knowledge. SLiDe's framework
consists of three modules: Generator, Recogniser and Incremental Situator that
includes two sub modules: Situator and Restructuring Situator. The Generator
module assists the designer to generate multiple representations of the initial design
composition in which these representations serve as a platform and form the design
environment for the Recogniser module. The Recogniser module detects shape

Chapter 1: Introduction 7

semantics in each representation in the design environment. The results of using the
Recogniser module are sets of observations. Each observation comprises a group of
shape semantics associated with each corresponding representation. The regularities
of relationships among shape semantics across observations are the triggers for the
Situator module to construct situational categories. These categories are
dynamically updated using the Restructuring Situator in response to any changes
taking place in the design environment.

The results of SLiDe are sets of situational categories that carry the applicability
conditions of shape semantics. They are called situational categories to differentiate
them from the normal categories found in unsupervised clustering mechanisms in a
knowledge driven approach in machine learning (Mitchell, 1997). In unsupervised
learning what the focus is and what the situation is, are not clear (Gero, 1998b). All
regularities in a state description of a particular state of designing are candidates for
both knowledge in focus and the situation. Within each regularity, a certain shape
semantic could be the knowledge in focus and all the remaining shape semantics
within this regularity become a candidate for the situation of that knowledge.

(d) To explore ways of using SLiDe in designing architectural shape compositions.

This can be achieved by demonstrating SLiDe's capabilities integrated with
conventional CAD systems, during the designing of architectural shape
compositions (SLiDe-CAAD), to provide interactive designing support at the
conceptual stages of designing. SLiDe-CAAD could help designers, using
conventional CAD systems or design sketches, in exploring the design space of their
designs and allowing them to have a variety of representations of what has been
designed. So that it may lead them to new moves from those they may otherwise
have favoured. The representations of the same design composition could help to
focus designers' attention to potentially hidden features of their design elements.
Enhancing the perceptual interaction with design elements could be achieved by
directing designers' attention to a set of shape semantics derivable from their current
design by highlighting various sets of design elements that reflect these semantics so
the designers might indicate which of these semantics is of interest. Having defined
the designers' interest as the knowledge in focus, SLiDe-CAAD could dynamically
change the association between design elements as the process of designing is
developing. This could be achieved by maintaining the situation of that focus from
the learned set of situational categories. Hence, SLiDe-CAAD could help to
maintain the integrity of the designers’ focus through preserving the relationships
that define the situation of that focus. Using SLiDe-CAAD to provide such features
to the conventional CAD systems has the potential to change the nature of these
passive systems to be active and responsive designing systems at the early
conceptual stages.

1.3 Scope and Limitations

The scope of this thesis includes knowledge driven situatedness of finding and locating
regularities between structure and behaviour within a design composition. In carrying out

Chapter 1: Introduction 8

this research, it is acknowledged that the concept of situatedness involves different
dimensions that can be taken into consideration while applying it to designing and
learning. For instance, actions taken by designers that lead to specific situations within
the view of achieving a certain goal could be traced back to learn the relationships
between goal-oriented actions and encountered situations, ie goal driven situatedness.
Within the proposed domain of architectural shape semantics, there are some other
factors that can be taken into account when learning the situatedness of shape semantics
such as the function of a space within a shape boundary. This may extend the focus from
locating regularities between structure and behaviour to include the function. Such
dimensions are beyond the scope of this thesis.

1.4 Organisation of the Thesis

The remainder of this thesis is organised as follows. Chapter 2 elaborates on the concept
of situatedness of designing and learning, reviews the related work from cognitive
science especially situated action, situated learning and machine learning in designing.
Chapter 3 introduces the concept of multiple representations and its role in serving as a
platform for a situated learning system. It presents how multiple representations can be
generated from an initial representation of a design composition using infinite maximal
lines and the process of selecting alternate shapes and searching for corresponding
shapes to generate different representations. Chapter 4 addresses the recognition of
shape semantics from the multiple representations, constructing sets of observations and
learning the situatedness of recognised shape semantics. Chapter 5 introduces the
framework of the computational model of situated learning in designing (SLiDe), its
modules and its processes. Chapter 6 presents the results of using SLiDe within the
domain of designing architectural shape compositions and its capacity to change its
behaviour in response to changes in the environment. Chapter 7 demonstrates ways of
using SLiDe in supporting architectural designing at the early conceptual stages such as
enhancing the perceptual interaction between the designer and design elements and
maintaining the integrity of the desired shape semantics. Chapter 8 outlines the
contributions of this thesis and possible future research based on the results of this thesis.

Chapter 2

Background

"It was a long time before I fully realised the importance, for many psychological
experiments, of putting the situations which are used to produce responses into sequential
form" (Bartlett, 1958)

"Knowledge can only be created dynamically in time" (Newell, 1982)

This chapter reviews the research areas that have contributed to the research presented in
this thesis. Different approaches to perceiving designing (rationality vs. reflection-in-
action), and ways in which designers engage in designing (planned vs. situated), are
discussed. The notion of situated action and cognition and how designing is viewed as
situated are introduced. What is the situation and how it is constructed are defined. Situated
learning as a general theory of knowledge acquisition where learning is related to the
circumstances of its acquisition and its connection to the theory of situated action is
addressed. Context-sensitive learning within the approach of situated learning is reviewed.
Learning in designing and machine learning systems in designing are surveyed. The
implications of situated learning for learning in designing are introduced and some works
related to situated learning in designing are discussed.

2.1 Designing and Situatedness

2.1.1 Designing: rationality vs. reflection-in-action

Designing is taken to be a complex process that includes activities and tasks. The vast
majority of views of designing are that it is an activity. It involves distinguishable
processes that occur over time. Many systems of describing these processes of
designing have been developed. The first generation methods of designing methodology
were heavily influenced by the theories of technical systems. The thrust of these
methods made designing to be seen as a rational process. It means staying within the
positivist framework of science, such as physics, as the model for a science of
designing. Simon (1996) quotes optimisation theory as a prime example of what he
believes a science of designing could and should be. The problem solving approach
prescribes looking at designing as a search process, in which the scope of the steps
taken towards a solution is limited by the information processing capacity of the acting
subject. The state space of possible designs is defined in advance and is bounded.

Chapter 2: Background 10

Describing designing as a rational system is particularly apt in cases where the problem
is determined and well structured and designers have complete strategies that can be
followed while solving them.

On the other hand, Schön (1983) criticises technical rationality (the basis of mainstream
design methodology), arguing that design methodologists that work within this view
restrict themselves to terms of generalities about the processes of designing. In Schön's
opinion, too little attention is paid to the structure of the tasks of designing and the
crucial problem of linking process and task in design situations. Schön proposes an
alternative view of designing, based on the idea that "a kind of knowing is inherent in
intelligent action". In "action oriented" designing, knowledge cannot be described
within the prevalent methodology of technical rationality. The basic elements of
activities are actions, and the kernel of the designing ability is to make intelligent
decisions about those actions. Designers react to the new state of their own making. The
final design is a result of this interaction. In the reflective conversation with the
situation, designers name the relevant factors, frame a problem in a certain way, make
moves towards a solution and evaluate those moves. During the naming-activity
designers explicitly identify relevant objects in the designing task. The framing activity
is to distinguish the context in which other activities occur. The moving activity is not
only a state of trying to solve the problem but exploring the suitability of the frame.
Reflection is a conscious and rational action that can lead to reframing the problem,
when the frame is not satisfactory, making new moves or attending new issues
(Valkenburg and Dorst, 1998). Describing designing as a process of reflection in action
works particularly well in the conceptual stages of the designing process, where the
designer has no complete strategies to follow in proposing and trying out
problem/solution structures (Dorst and Dijkhuis, 1996).

2.1.2 Designing actions: planned vs. situated

Which comes first, the action or the plan? Some might say, the plan. According to
Suchman (1987), saying this is not an appropriate way of understanding what really
happens when a person sets out to do something. It is only when we have to account for
our actions that we fit them into the framework of a plan. Actions are to a great extent
linked to the specific situation at hand and are therefore hard to predict by generic rules.
Action, learning, understanding and remembering is situated. Most of Artificial
Intelligence related action research has assumed that the plan has an existence prior to
and independent of the action. Intentions are viewed as the uncompleted part of the
plan. This assumption does not account for intentions that are never realised. Designing
has been viewed as intentional action (Galle, 1999), in which no plan was completely
formed in advance. According to Suchman (1987), plans are representations of situated
actions. The objectivity of the situations of our actions is achieved through the
indexicality of language. By saying that language is indexical, indicates that the
meanings in its expressions are conditional on the situation. Language is a form of
situated action. Humans associate a word with a variety of different contexts, each of
which contain one or more salient features that could trigger the use of that word. These
features associated with a word are not just a list to be applied as they arise serially.
Rather they are correlated in certain ways, and these correlations are important in
applying the word. The situatedness of a word is the correlation of various features

Chapter 2: Background 11

associated with each other (Gee, 1997). As a consequence of the indexicality of
language, mutual intelligibility is achieved on each occasion of interaction with
reference to situation particulars, rather than being established once and for all by a
stable body of shared meaning. Suchman (1987) concluded that building interactive
tools has much to gain from understanding the context of situated human action.

2.1.3 The situated view of cognition/action
Situated cognition is the study of how human knowledge develops as a means of
coordinating activity within the activity itself. Situated cognition acknowledges that
every human thought and action is adapted to the environment, that is, situated, because
what people perceive, how they conceive of their activities, and what they do develop
together. This means that feedback occurring internally and within the environment
over time is of paramount importance. Therefore, knowledge has a dynamic aspect in
both format and content. The central idea of situated cognition is that in order to
function efficiently, the brain needs not only the body but also the surrounding
environment. Situatedness in action (Clancey, 1997b) acknowledges that "where you
are when you do what you do matters". A central tenet of the situated action approach is
that the structuring of activity is not something that precedes it but can only grow
directly out of the immediacy of the situation (Suchman, 1987; Lave, 1988). Every
activity is by definition uniquely constituted by the confluence of the particular factors
that come together to form one situation (Nardi, 1996). The implication of this view is
that actions are interrelated to their locus and application. Situatedness or context
dependence is seen as a general principle of human knowledge and activities, and
cognition is a constructive process taking place in a situated background (Rappaport,
1998). It is a shift in perspective from knowledge as a stored artefact to knowledge as a
constructed capability-in action. This shift is in contrast to the rational approach in
which the theory of situated cognition acknowledges that when modellers equate human
knowledge with a set of descriptions (a collection of facts and rules in expert systems),
they are describing abstractly how the program should behave in particular situations.
They are not capturing the full flexibility of how perception, action and learning are
related (Clancey, 1997b).

Situativity theory is used as a replacement term for situated cognition by Greeno (1995),
leading exponent of situated cognition, who expressed dissatisfaction with the term
situated cognition claiming that all cognition is situated. But Bereiter (1997) asserts that
there is a non-situated cognition and situativity theorists have devoted a lot of effort to
criticising it. Non-situated cognition cannot be found in humans. It can be found in
machines. Most artificial intelligence has been constructed to a model radically at
variance from the model suggested by situativity theory. In situated cognition, people or
other agents carry on activities adapted to the environment. Machine intelligence of the
classic AI kind is not of that type in which cognition is entirely a process of symbol
manipulation (Vera and Simon, 1993). Interaction with the outside world is done by
means of transducers that translate inputs from sensors into symbols that the machine
can manipulate or translate symbols into actions. One very important line of argument
in favour of situated cognition comes from roboticists, who find that the non-situated
cognition does not work very well (Beer, 1990).

Chapter 2: Background 12

If we take rule-based expert systems as exemplifying non-situated cognition, then
looking at what they may offer would give us some insights into situated cognition.
Rule-based expert systems work very well when all the necessary information can be
explicitly represented and indexed, as in the case with a game of chess. The rule-based
expert system can then work on its stored information and produce results to the part of
the real situation of which it contains representations; for example, it can compute a
move appropriate to a real chess game. The trouble is that the great bulk of real world
situations cannot be represented in this way, simply because they are unknown until
they are encountered and experienced. Although non-situated cognition may not be very
good for capturing the situatedness of activities, it has proved to be capable of guiding a
space vehicle to Mars (Bereiter, 1997).

Saying that the cognition is situated means that reasoning processes are not merely
conditional on the environment, but are inherently brought into being during an
interactive process. Information in the environment is not merely described, selected, or
filtered, but constructed in the course of perception. Categorisation of things in the
world are not merely retrieved descriptions, but created new each time (Clancey, 1991).
From a psychologists' perspective, the theory of situated action (Mills, 1940; Suchman,
1987; Thelen and Smith, 1994) acknowledges that knowledge is dynamically
constructed as we conceive of what is happening to us in our moves and the activity that
we are currently engaged within. A dynamic adaptation is always generalising our
perceptions, our actions and coordinations as we act. This reconceptualisation occurs
moment by moment and is a necessary part of abandoning a plan and looking more
carefully to recategorise the situation. Situated cognition acknowledges that we are
always automatically adjusting even as we follow a plan. We are always recategorising
circumstances, even though we appear to proceed in locked step with our prescribed
actions (Clancey, 1997a).

2.1.4 Designing as a situated activity
In designing there are things to know, ways of knowing them and finding out about
them. The designerly way of knowing has been identified in an attempt to understand
how designers work. It is suggested (Baker, 1993) that designers share a solution
focused strategy, which allows them to learn about a particular problem by generating a
set of possible solutions to it. This is different from the more scientific definition of a
solution as the result of a process of optimisation or formal analysis. Each possible
solution is a different perspective (representation), of how the designers are looking at
the problem. In this thesis, designing is viewed as a situated activity in which designers
interact with their design environment and bring their prior experience to the particular
situation. The way in which designers interact with objects in the design environment
and find out about these objects is based in part on what is available in front of them at
that moment of time in the environment and their prior experiences brought to the
situation. Their interactions with the design environment cannot be completely planned
in advance, simply because designers do not know in advance what will be available in
the design environment in order to pre-plan their actions. Designers’ actions take place
in situations. The effect of this, is that designing is an activity that does not exist except
in relation to situations and design knowledge cannot be fully understood or explained
in isolation from its situation.

Chapter 2: Background 13

Design problems are described as ill-structured because one never has sufficient
information in the initial state when the properties of the goal state are not fully
specifiable in advance; and therefore many different goal states are conceivable
(Goldschmidt, 1997). The implications of various design actions are not always
predictable. For instance, if a new object is added to a design, it is not possible to fully
predict that object’s impact on the design. This new object might combine with other
objects, or might not interact with other objects at all (Brown and Birmingham, 1997).
This clearly indicates that it is not possible for designers to know beforehand what
particular set of states they would encounter; and in consequence of what kinds of
actions they might take and similarly what kind of results they might achieve. This is
simply because they travel among different surroundings in the environment in relation
to the goal state in which these relations might change and their effect might lead to
different situations.

Thus, it is claimed that designing is a process experienced within the situation
encountered by designers. This coincides with the most recent view from cognitive
science that has started to provide some insight into human activities where cognition
and knowledge are emergent properties of the interaction of an individual with the
environment, ie. the current situation (Clancey, 1997b; Clancey, 1998). Accounting for
the situation entails that learning methodology cannot be limited to the task at hand but
has to take into account the whole environment in which the task has to be preformed.

2.1.4.1 Situatedness in designing

In conceptual designing, designers work with their experiences, their knowledge and
their perception of what is in front of them in order to determine what may be described
more formally as the variables that contribute to the function, behaviour and the
structure of the resulting design. The particular behaviour and structure variables are not
only chosen a priori but are produced in response to the various situations as
encountered by designers. What the designer has done previously, both prior to this
design and during the current process of designing, affects how designers view the
situation and what memories they construct and bring to bear on the current situation
(Gero, 1998a). For instance, Figure 2.1 demonstrates the concept of situatedness
through an example of emergence and shows graphically how the situation can affect
what is to be perceived. Figures 2.1(a) and (b) show only one head at some time and
designers may never emerge a vase as they may do with Figure 2.1(c) and may never
use that emergent figure in later designing. It is only when the situation exists where
both heads appear at the same time, Figure 2.1(c), that the emergent vase appears. With
no emergent vase it is not possible for designers to be influenced by it or to change their
design trajectory on the basis of it. Furthermore, if the designer were to choose to reflect
the image in Figure 2.1(c) around one of its vertical edges as it can be seen in Figure
2.1(d), it is only then in this situation that not only a new emergent shape (decorative
arch) appears in the middle between the two vases, but also an emergence of a new
relationship, that is: reflective symmetry of the two vases around a vertical axe.

Chapter 2: Background 14

Figure 2.1 (a) and (b) show only single dark human-like heads at some time; (c) it is only when
the situation exists when both heads appear at the same time facing each other, that the

emergent vase appears; and at (a) and (b) different situations have arisen and therefore no
emergent vase can be found; (d) shows a new situation where the designer chooses to reflect the
image in (c), it is only then that a new emergent shape (decorative arch), appears in the middle

between the two vases; in addition to the emergence of a reflective symmetry relationship
between the two vases (after Gero, 1998).

The concept of situatedness is not necessarily tied to any particular representation such
as the graphical example demonstrated in Figure 2.1. However, each representation has
the potential to provide different situations and as a consequence different
interpretations of what the situation is. It provides a basis for the delineation of the
indeterminism of designing. Situatedness can be seen as a means by which the designer
changes the trajectory of the developing design. Different situations provide different
opportunities to move in different directions considering that neither the situation nor
what is being focused on is given but is a function of the designer's interpretation of
what is there and how the situation is constructed. This may explain in part why
designing is not a predictable activity and provides insight into why designing often
leads to unexpected discoveries. Schön (1987) described the concept of situatedness in
designing briefly as: "He shapes the situation ... his own methods and appreciations are
also shaped by the situation". There is increasing evidentiary support for situatedness in
designing (Goldschmidt, 1997; Lueg and Pfeifer, 1997; Suwa et al., 1998b; Lueg,
1999).

2.1.4.2 Situated versus procedural and declarative knowledge

Declarative knowledge describes how things are. This is accomplished through the
description of objects (office, building, and entrance), their attributes, (functional, open
and attractive), and the relations between them (functional building, open entrance and
attractive office). Procedural knowledge describes and predicts actions or plans of
action. All knowledge of “how-to” (How to make stairs? How to construct a building?),
are examples of procedural knowledge. Before the declarative knowledge can be of use,
an understanding of how the goal state is linked to the initial problem state must be
present and a set of transformations to accomplish this must be developed, ie procedural
knowledge.

Situated knowledge is captured and associated with a specific situation. Situated
knowledge about an object would be understood as the relationships between this object
and a social or physical situation rather than simply a property of the object. In other
words, it is these relationships that help to locate a certain piece of knowledge in its
specific situation within which it was recognised. A relativised concept of situated

 (a) (b) (c) (d)

Chapter 2: Background 15

knowledge would be analogous to the concept of motion in physics. The velocity and
acceleration of an object in motion are not properties of the object itself, but are
properties of a relationship between the object and a frame of reference (Greeno, 1989).
Within this view, knowledge could be seen as situated.

2.2 What is the "situation" and how it is constructed?

Is a situation a moment of time? Is it a location? Is it a life situation, a social situation,
or a configuration of relationships? Or is it perhaps more like a position, a perspective,
and a viewpoint of the subject? All of these aspects play a variety of roles in the
discourse on situated cognition. Situatedness is not a black box; it is more than an open
box that offers a rich variety of interpretations and possibilities (Engestrom and Cole,
1997). Gee (1997) states that "the word situated itself takes on a somewhat differently
situated meaning".

Situatedness has antecedents in the work of Heidegger (1927), Bartlett (1934) and
Dewey (1939). Heidegger (Heidegger, 1927; Stahl, 1993) defines the situation as the
person’s sensitive context including the physical surroundings, the available tools, and
the circumstances surrounding the task at hand within the person’s aim. Bartlett gave a
very broad definition of what constitutes a situation. He claimed that a situation cannot
be adequately described merely as a series of reactions, or merely as an arrangement of
sensations, images, ideas or train of reasoning. A situation always involves the
arrangement of cognitive materials by some more or less specific active tendency, or
groups of tendencies. To define a situation in any given case we have to refer not only
to the arrangement of material, but also to the particular activities in operation. On the
same line of thought Dewey (1939) emphasised that a situation is not a single object or
event. A situation refers to our experiencing objects and events in connection to a
contextual whole.

In the situated view of design knowledge, the situation is defined as the relevant context
from the environment in relation to a specific aim or focus and is constructed. This
relevant context is relevant to that focus where other contexts in the environment are
irrelevant. The relevancy of the context in relation to the knowledge in focus is
determined from the regularities constructed from the environment. Thus, a situation is
not simply the context in which the context is conceived very broadly. For instance, the
physical surroundings of visual objects have an impact on basic perception (Solso,
1997). Consider Figure 2.2, where the same stimulus produces different perceptions
depending on the situation within which it is perceived. Figure 2.2(a), when read is
“THE CAT”; yet upon close inspection, the stimulus in "THE" is the same as in
"CAT". If H/A were presented in isolation as in Figure 2.2(b), out of context, we would
be confused as to their correct identity. The identification of each is based upon the
situation.

Borrowing from Barwise and Perry (1983) and Barwise and Seligman (1997) assert the
idea that a situation is determined by "uniformities" (regularities), and composed of a
collection of entities. Each entity may have a set of properties associated with it.
Furthermore, there are some relationships of the entities to one another in the situation.

Chapter 2: Background 16

Typically, these can be described as relationships that support the understanding of the
situation in terms of how the entities relate to one another. The entities of a situation can
be any meaningful characteristic or abstract idea. The relationships within a situation
are the meaningful associations among entities that provide structure to the situation.
The regularities of relationships among entities give rise to a learning system to
encounter the situation. Such a system should be attuned to these regularities.

Figure 2.2 An example of situation. The same stimulus is perceived as an H or an A
depending on the situation (after Solso, 1996).

Examples of the situatedness of a table in an office space or in a dining room are
described as follows. The relationships between a table and other entities in an office
space are regularities across observations recognised in its environment. In a dining
room, there is another type of relationships between the table, even though it may be the
same object, and other entities. These regularities of relationships are not natural laws
nor causal effects, but rather automatic consequences of differentiating the relationships
in the first place. It is these relationships that allow the situated knowledge about a desk
and a dining table to be constructed in relation to their situations from the environment
within which they were recognised. Within this comparison, we may make a distinction
between what we mean by context and situation. In an office space there might be many
objects (entities), that surround a table, such as drawers, filing cabinets, computers, desk
lamp, walls, windows, etc. These objects constitute the whole context of a table. The
situation of that table that made it to be recognised as a desk is comprised of the salient
features from the surroundings which are drawers, filing cabinets, a computer and a
desk lamp. In an open office space, walls and windows are not salient features of the
surroundings of that table, however the table is still to be recognised as a desk. So, the
situation is the only relevant part of the context in relation to the focus.

Following Barwise and Perry (1983), a distinction is made between two different types
of situations: static and dynamic situations. A static situation is a state of affairs in
which the major components of the situation do not change. It involves the same
collection of entities and the same relation to one another. In contrast, a dynamic
situation is a course of events composed of a series of frames of related events that are
linked through some common entity, ie regularity. For instance, a mail carrier making a
phone call in which the entities, their properties and their relationships remain the same
is a static situation. In contrast, the situation of the mail carrier delivering the mail in a
route is a dynamic situation whereby different entities such as different houses, streets,

(a)

 (b)

Chapter 2: Background 17

scenes, obstacles, etc. and different relationships are involved (Radvansky and Zacks,
1997).

One of the main characteristics of designing is its dynamic nature. During the process of
designing, both knowledge and situations are not static, but are invariably subject to
change. This is due to the change in the design environment, which involves searching
for knowledge, structuring and interpretation. Most important, it involves the
construction of knowledge-relationships during this cyclic process and joining these
knowledge-relationships with the previous ones, defining new knowledge-relationship
structures, which may lead to modifying previous situations or creating new ones. Once
a situation has been constructed, it can be updated to include new knowledge that is
relevant to the situation. Thus updating includes adding new knowledge that was not
previously available or creating new situations based on the new observed knowledge
from the environment. The situations represent the applicability conditions of design
knowledge. Design knowledge becomes situated when its applicability conditions are
learned. In this thesis, the role of situatedness is to locate design knowledge in its
situation by learning the regularities of design knowledge relationships across different
observations from the environment within which this knowledge was recognised.

The following is a simple analogy to constructing and learning situations. Imagine that
you are reading a particularly engaging detective story where you are trying to solve the
mystery before the author hands the solution to you at the end of the book. One of the
basic elements of this task is to try to construct the circumstances under which the
murder took place. This may include the location of important objects at the crime
scene, the location of other people at the time of the murder, the relationships of
different characters to one another and the victim and other pieces of information. To
make the task more difficult, those aspects of the crime scene that you are allowed to
learn about are revealed at different points of time and usually not in order of their
importance. To be successful, you must integrate this information to construct the
situation in which the murder took place (Radvansky and Zacks, 1997).

2.3 Situated Learning

Situated learning is a general theory of knowledge acquisition where learning is seen to
be more closely linked to the circumstances of its acquisition than previously
acknowledged (Lave and Wenger, 1991; Billett, 1996). Situated learning addresses the
relatedness of actions to situations and to the bringing forward of the contextual
embeddedness of learning (Lave and Wenger, 1991; Kirshner and Whitson, 1997). It is
based on the concept that knowledge is contextually situated and is fundamentally
influenced by the context in which it was acquired. The nature of the situation and
circumstances in which knowledge is appropriated is influential in determining the
likely prospect of subsequent redeployment to other situations (Billett, 1996). Lave and
Wenger (1991) argue that learning as it normally occurs is a function of activity and the
context in which it occurs, ie it is situated. This contrasts with most learning systems
which involve knowledge that is often presented out of context, ie context free.
Furthermore, situated learning may be incidental rather than deliberate. Brown et al
(1989) argue that knowledge is situated, ie context dependent, and that activity and

Chapter 2: Background 18

situations are integral to cognition and learning. Suchman (1987) claimed that learning
entails a form of context-bound and embodied situational action. Every course of action
depends in essential ways upon its material, and circumstances. So, learning is not
simply a matter of ingesting externally defined, uncontextualised objects, but a matter
of developing context-bound discourse-practices. Learning knowledge in a relevant
context motivates learning and ensures that it is usable (Streibel, 1995).

What does it mean to say that learning is a process of knowledge construction that is
highly tuned to the situations within which it takes place? Two interpretations, at least,
are important: The neurophysiological view is that perception and action arise together,
so one's knowledge is always a new way of coordinating ways of talking, seeing and
moving within on-going interactions (Clancey, 1993). In this sense, learning is tuned to
situations because our perception of what constitutes a situation is arising within a
newly organised and adapted response. The social view is that the use of tools occurs
within social interactions, so that the idea of task is enlarged to "participating as a
member of a community of practice" (Lave and Wenger, 1991).

Context-sensitive learning as related to situated learning

Many practical learning applications necessitate the use of context in learning (Matwin
and Kubat, 1996). Activity theory (Nardi, 1996) proposed a specific notion of the
context in which context is related to some extent to the definition of the situation as
adapted in this thesis. Context is constituted through the enactment of an activity.
Relatively similar in AI terms, context means the general conditions or circumstances in
which an event and action takes place (Akman and Surav, 1995). A variety of means of
studying context conditioning has been developed. Some procedures examine the
effects of context in response to specific features embedded in that context, whereas
other procedures examine behaviour controlled by the context itself. A context is
constructed every time a system is activated in a setting: finding out what is available
and examining prior experience. Context, then, is the result of this process of
identification in a particular activity setting. Within this view, context is never
universally given, nor objectively predetermined (Ores, 1998).

Turney (1996) argued that learning systems that can identify the context would have a
substantial advantage over a system that require a human to identify the sensitivity of
context. An understanding of surrounding events and accompanying dialogue is vital if
our utterances are to mean what we want them to mean. So too in designing it is
necessary to take account of the context within which an artefact and its various
components and subcomponents are to function. Coyne and Gero (1985) reformulated
the design rules so that they are sensitive to context and define contextual attributes as
those that appear on both sides of the transformation rule. They describe a
transformation rule belonging to a context sensitive design grammar as one that
operates on a particular pattern in the state description by transforming it into another
pattern, provided that other patterns are present. Those other patterns constitute the
context for that rule and are not changed by the rule. They must be present if the rule is
to be fired.

Chapter 2: Background 19

2.4 Machine Learning in Designing

A popular definition or description of the process of designing is as a goal-oriented
problem-solving activity (Archer, 1965). The designing process has been described as
the cycle of design analysis, design synthesis, and design evaluation (Asimov, 1962;
Jones, 1963; Dasgupta, 1989). In this model of designing, well-structured knowledge is
needed. Design situations, design process, and design decisions are predefined and
described in some symbolic representation. In this view of designing, the relevance of
all designing activities is fixed beforehand; consequences can be intended with no need
to reflect on design actions. Based on this metaphor, design is an action within an
assembly of symbols, patterns, and planned sequences (Sun, 1993). Based on this view
designing has been modelled as search (Coyne et al., 1990; Russell and Norvig, 1995)
within a given representation. Designing has recently been modelled as a form of
exploration (Logan and Smithers, 1993; Gero, 1994), where the design space that is to
be searched has first to be constructed or located. Both these views are founded on the
notion that knowledge exists outside of its use and only has to be applied to be useful.
Thus, machine learning in designing is concerned with finding relationships between
structure and behaviour and representing that as knowledge to be applied later.

Each design that a designer works on adds to the experience of the designer. In this
sense, the designer learns from each design (Gero, 1996). Designers learn when they
encounter knowledge that is sufficiently different from their present state of knowledge
(Persidis and Duffy, 1991; Duffy and Duffy, 1996a; Duffy, 1997). In other words,
memory provides the foundation upon which learning takes place. Towards
understanding learning in designing, Persidis and Duffy (1991) and Duffy (1997)
discussed how learning in designing occurs, what knowledge is learned, and when
learning occurs? To understand learning it is useful to examine what constitutes a
learning event. Learning might occur in three basic ways: acquisition, generation and
modification. Acquisition represents the process of receiving new knowledge,
generation represents the process of creating new knowledge from existing knowledge
and modification represents the process of altering existing knowledge. There are no
clear boundaries to the design knowledge to learn, however there are main areas. For
instance, we may learn from the environment in which the design solution operates; the
design description of the solution; and the domain in which the design solution belongs.
Learning is a perpetual process that occurs both during and within designing.

Learning and designing are closely related activities. Identifying design problems
involves the use of knowledge learned from previous design solutions. Searching for an
alternative design solution can also be somehow guided by the knowledge learned from
a previous design failure. The evaluation of a design solution can usually be based on
the knowledge learned from generalised features of the proposed design solutions
(Smithers et al., 1993). Learning activities can take several forms and assume several
roles learned in the designing process (Reich et al., 1993): learning technical
knowledge; learning about the problem, its solution, and their relationships; and
assimilating experiences for future use.

Chapter 2: Background 20

Learning systems in designing

The ability to learn must be part of any system that would claim to possess intelligence.
The original objective of machine learning has always been the automated generation of
knowledge in different forms such as decision rules or trees (Reich, 1997; Reich, 1998).
Intelligent systems constantly adjust their knowledge and expectations in the course of
their interactions with their environment, as well as through the experience of their own
internal states. The dynamic nature of knowledge plays an important part in the
development of computer-based designing systems. The mainstream of computer-aided
designing systems has focused on the formulation of solutions rather than the generation
and modification of knowledge used to create these solutions. This applies to the
development of artificial intelligence in designing systems and intelligent CAD systems
(Duffy, 1997).

Machine learning is a branch of AI concerned with the study and computer modelling of
learning processes. Machine learning is primarily composed of (Carbonell, 1990;
Langley, 1996): inductive learning, eg acquiring concepts from positive and negative
examples; analytical learning, eg explanation-based learning and certain forms of
analogical and case-based learning methods; genetic algorithms, eg classifier systems;
and connectionist learning methods. Machine learning techniques can be classified
according to the level (knowledge, symbol, or device) at which knowledge
representations (such as, rules, frames, predicate logic, semantic networks, classifiers,
conceptual clustering and genetic algorithms) can be expressed (Kocabas, 1991). The
main machine learning techniques applied in designing include (Duffy, 1997): agent
based learning, analogical learning, case-based reasoning, induction, genetic algorithms,
knowledge compilation and neural network systems.

The development and applications of machine learning in designing did not receive
much attention until the late 1980s. An overview of machine learning systems in
designing extracted from an extensive review (Duffy, 1997; Sim and Duffy, 1998) is
illustrated in Tables 2.1(a) to (c) summarising how learning systems in designing assist
in the utilisation of experiential design knowledge. In this overview, six main elements
of the learning process have been presented: input knowledge (Ik), goal or reason for
learning (Gl), knowledge transformers (Kt), output knowledge (Ok), what triggers
learning (Ttw) and when learning is triggered (Tlt); in addition to two other elements: the
way in which design knowledge is represented and the methods of machine learning
that were used. The elements of concern here are what triggers the learning and when
that trigger is likely to occur. Knowing them is important if machine learning capability
is to be incorporated into designing support systems. It is also important to relate them
to the context of the knowledge learned and the knowledge transformers involved
showing the relationships between these elements of learning (Sim and Duffy, 1998).
Tables 2.1(a) to (c) show various learning systems in designing in which learning
design knowledge takes place under different types of triggers: retrospective, in situ and
provisional. Retrospective triggers for learning design knowledge can occur at the end
of the designing process while in situ triggers of learning occurs during the designing
process, while design decisions are being made. These decisions may lead to successful
design action or a failure. An example of in situ trigger is the violation of design
expectations (Chabot and Brown, 1994).

Chapter 2: Background 21

Table 2.1 (a) Overview of learning systems in designing.

Machine
learning in

design

Input
Ik

Goal
Gl

Knowledge
Transformer

Kt

Output
Ok

What triggers
learning, Ttw

When is
learning

triggered,
Tlt

Design
knowledge

represented

Machine
learning
methods

(McLaughlin
and Gero,
1987)

Past design
configuration
and performance
evaluation
criteria

Excellence driven to
achieve better design

Group
rationalisation

Clusters of design
configuration map
to performance
evaluation space

Performance trends in
new design

Retrospective Clusters of
archetypes of
design solution
mapped to
performance
evaluation space

ID3/Pareto

Similarity/
dissimilarity
comparison

Knowledge of
design plan.

New but similar
design

In Situ Design plan as a
hierarchal goal
structure

Derivational analogy
method

BOGART
(Mostow,
1989; Mostow
et al., 1992)

Several plan
instances

Change the design
plan by reasoning
from previous plans

Generalisation Generalised design
rules

Generalised design
plans

No existing design
rules

Module(s) in plan
refined

In Situ

In Situ/
retrospective

Generalised
design rules

Generalised
design plans

LEAP using EBL
generalisation
VEXED’s ability

ARGO
(Huhns and
Acosta, 1992)

Records of
design action
described by
preconditions
and post-
conditions.

Streamline design
process by replaying
a similar plan

Abstraction Abstracted design
plan by removing
leaf nodes from
plan

New abstract design
concept

Retrospective Abstract plan of
macro-rules

Merging edge macro-
rules into cumulative
macro by removing
leaf rules

DONTE
(Tong, 1992)

Set of sub-
problems that
are presumed to
be independent

Learn design control
knowledge to
optimally search the
design space

Explanation/
discovery

Search control
knowledge

Optimal design
solution

Provisional Discovery of
macro-decision
rule to reduce
search

Hypothesis formation
Hypothesis
test

BRIDGER
(Reich, 1993)

Instances of past
designs together
with existing
taxonomic
knowledge

Expedite synthesis of
preliminary design
concepts

Group
rationalisation

Taxonomic
knowledge of
design concept

New concept Retrospective Hierarchal
structure of
concept/sub
concept

ECOBWEB/
EPROTOS

Chapter 2: Background 22

Table 2.1 (b) Overview of learning systems in designing.

Machine
learning in

design

Input
Ik

Goal
Gl

Knowledge
Transformer

Kt

Output
Ok

What triggers
learning, Ttw

When is
learning

triggered,
Tlt

Design
knowledge

represented

Machine
learning
methods

Group
rationalisation

Empirical
knowledge of
quantitative
information
Design patterns of
qualitative
relationships

Performance trends in
new design

Retrospective Decision tree of
rules for Pareto
optimum design

COBWEBCONCEPTOR
(Li, 1994)

Instances of past
designs in terms
of attributes and
attribute values

Expedite preliminary
definition of form and
structure of design
concept.

Derivation /
randomisation

New/updating
empirical
relationship(s)
New/updating design
patterns

Retrospective Empirical
formula

Design patterns

Concept aggregation

Knowledge of
failed constraints

Streamline design
process by detecting
and avoiding design
failure

Similarity/
dissimilarity
comparison

Knowledge of
anticipated crucial
constraints

New design case In Situ Design plan /
history

Case-based
reasoning

DIDS
(Wang and
Howard,
1994) Records of

design action
described by
preconditions
and post-
conditions.

Streamline design
process by replaying a
similar plan

Abstraction Abstract from
session control
knowledge of :
Global design plan

Related redesign
plan Constraint
violations

Past design cases to
improve design
process of similar
designs

Crucial constraints
that triggered redesign
process

Retrospective

Provisional

A global design
plan and several
design plans

Identify and classify
all knowledge source
activation records

DSPL
(Chabot and
Brown,
1994)

Knowledge of
current design
constraints

Streamline design
process by detecting
and avoiding design
failure

Specialisation Specialised design
constraint
knowledge

Constraint violation In Situ Generalised
design plan.
Constraint rules.

Knowledge
compilation through
constraint inheritance

IDEAL
(Bhatta and
Geol, 1994)

Past designs
(structure-
behaviour-
function)

Learning physical
principles of a concept
without knowing the
target concept a priori

Explanation/
discovery

Model of physical
principles

Functional-driven
design

Retrospective Discovery of
physical
principles from
abstract design
models

Hypothesis
formation
Hypothesis
test

Chapter 2: Background 23

Table 2.1 (c) Overview of learning systems in designing.

Machine
learning in

design

Input
Ik

Goal
Gl

Knowledge
Transformer

Kt

Output
Ok

What triggers
learning, Ttw

When is
learning

triggered,
Tlt

Design
knowledge

represented

Machine
learning
methods

NETSYN
(Ivezic and
Garrett,
1994)

Past designs to
train the neural
network to
estimate the
desired
probabilities

Learn the Bayesian a
posteriori
probabilities of
design properties.

Derivation /
randomisation

Posterior
probabilities of
design properties.

New knowledge of a
posterior probabilities

Retrospective Bayesian a posterior
probabilities of
design properties
represented as
network of weights
in neural network
structure

Modular back
propagation neural
network

Expedite preliminary
definition of form
and structure of
design concept.

Association/
disassociation

Compositional
knowledge of
design concept

New design
configuration

In Situ Compositional
network of concepts
Numerical network
of concepts

Semantic links in
network

NODES
(Duffy et al.,
1995)

Instances of past
designs together
with
compositional
knowledge, eg.
part-of and kind-
of

Enrich its design
knowledge –base

Generalisation Generalised design
concept

New concept saved In Situ Generalised rules of
design concepts

Maximal Conjunctive
Generalisation

CDA
(Britt and
Glagowski,
1996)

Past of working
designs and
predefined
domain rules

Detailing to
reconstruct design
history

Detailing Detailed design
plan reconstructed
bottom-up

No similar design
plan existed

Provisional Detailed design plan
built bottom-up

Reconstructive
derivational analogy

(Murdoch
and Ball,
1996)

Past design
configuration
and performance
evaluation
criteria

Excellence driven to
achieve better design

Group
rationalisation

Clusters of design
configuration map
to performance
evaluation space

Performance trends in
new design

Retrospective Clusters of
archetypes of design
solution mapped to
performance
evaluation space

Kohonen neural
network/ GA

PERSPECT
(Duffy and
Duffy, 1996)

Past design
concepts
described by
attributes and
values

Excellence driven by
utilising knowledge
from multiple
sources

Abstraction Multiple forms of
explicit/implicit
design knowledge

Non-existence of
useful empirical
equation or
insufficient
knowledge of
attribute values

In Situ/
provisional

Abstracted empirical
equation

ECOBWEB/DESIGN
ER

Chapter 2: Background 24

The concept of customised viewpoints (Duffy and Kerr, 1993; Duffy and Duffy, 1996b)
is another example of learning design knowledge in situ. Depending on the design
perspective that best suits the designer's current problem solving situation, PERSPECT
(Duffy and Duffy, 1996b) can generate in situ multiple forms of implicit experiential
knowledge through generalisations of past designs information. The most suitable
generalisation of past designs that supports the current customised viewpoints for the
design is identified. Provisional triggers such as control knowledge, DONTE (Tong,
1992), to search the design space is learned provisionally in anticipation of reducing the
complexity of the search; or failed constraints, DIDS (Wang and Howard, 1994),
anticipated in redesigning. On the other hand, Grecu and Brown (1996) identify some
other reasons for learning such as: novelty driven, excellence driven and failure
avoidance driven.

Reich (1997) introduced the "timing" dimension as one of the key dimensions of
learning systems. The timing dimension ranges from: early in systems that learn pro-
actively by receiving data, learning and storing knowledge that can subsequently be
used for problem solving; or late in systems that learn reactively by storing data and
subsequently retrieve it, learn locally from it and adapt it to solve problems. Most
machine learning systems learn pro-actively, such as ECOBWEB (Reich and Fenves,
1992), except for instance based learning systems (Nicolas Lachiche and Marquis,
1998) or case-based reasoning (Kolodner, 1993; Maher et al., 1995; Lenz, 1998) that are
reactive systems.

2.5 Situated Learning in Designing

Machine learning paradigms are used within a shared view of the role of machine
learning in designing: namely that of "learning to perform existing tasks better using
available tools", where the tools themselves are unchanged and learned knowledge is
either unrelated to its locus or application (Gero, 1996; Gero, 1999). There are benefits
in having the tools unchanged by their use as this makes them independent of their use
and they can be used with any arbitrary problem. However, there are significant
disadvantages in having tools unchanged by their use. Each design that a designer
works on adds to the experience of the designer, in this sense the designer learns from
each design. As for the knowledge being unrelated to its locus or application makes the
learned knowledge context free and universally applicable. When each of these
designers tackles a similar design task it would be useful if the same tools now had
knowledge about what it has learned and its relation to the situation within which it was
learned. The effect of this would be tools which are increasingly useful to the designer
(Gero, 1996). In order for this to occur and to guide the use of knowledge, tools would
have to learn the knowledge in relation to its situatedness.

The dimensions of machine learning in designing have been developed further since
primarily outlined by Presidis and Duffy (1991). Grecu and Brown (1996) introduced a
set of dimensions for machine learning in designing inspired mainly by the attempts to
apply machine learning in designing. Leading towards working systems, Reich (1998),
built on previous work that dealt with the practical use of machine learning in designing
(Reich et al., 1993; Reich, 1994; Reich, 1997) and developed a set of dimensions of

Chapter 2: Background 25

learning contexts as a top down analysis of learning in designing. Table 2.2 maps
Presidis and Duffy (1991), Grecu and Brown (1996) and Reich (1998) dimensions of
machine learning in designing reflecting the evolution and development of machine
learning techniques in designing and can be seen as complementary to each other.

Table 2.2 Dimensions of machine learning in designing.

Reich (Reich, 1998) Grecu and Brown (Grecu
and Brown, 1996)

Presidis and Duffy
(Presidis and Duffy,
1991)

Who is learning?
Why does the learner want to
learn?

What can trigger learning? What can trigger learning?

When does the learner learn
and when the results are
needed?

When is learning triggered?

What is the learner doing?
What is learned? What might be learned? What knowledge is

learned?
How does the learner learn? Elements supporting learning

Availability of knowledge
Methods of learning
Local vs. global learning

How is learning carried
out?

What are the consequences of
learning?

Consequences of learning

How many resources are
needed to carry out the
learning activity?

Situatedness of learning in designing opens a different perspective of designing and
learning that has not been adequately explored. Based upon the aforementioned terms of
situatedness the vast majority of learning systems in designing deal with the
environment independently from the situational conditions, ie context free systems.
However there are a few systems that are related to some concepts of the situatedness as
discussed in Sections 2.5.1 and 2.5.2. A situated learning system distinguishes
knowledge that has been learned in multiple contexts by moving through these contexts
or states of situatedness where this knowledge is elicited to situate it within its
environment. The situatedness of knowledge carries with it aspects of the situation
within which it was acquired. Supporting situatedness within a learning system is an
initial attempt and important step towards building support systems in designing. In this
sense, acknowledging the concept of situatedness is of importance to provide a system
to have the capability to add another dimension to the existing learning systems in
designing. The new dimension is to learn within which design knowledge was learned.

2.5.1 Incremental learning systems in designing

The situatedness of designing includes a set of concepts such as the dynamic nature of
design knowledge and the relationships between knowledge and its locus and
application. There are some machine learning systems in designing that are related to

Chapter 2: Background 26

the dynamic nature of learning design knowledge. Learning incrementally and detecting
changes in an environment are important to knowing when it is time to learn.
ECOBWEB (Reich and Fenves, 1992), is a system that learns synthesis knowledge and
have the ability to track a changing domain. Some other learning mechanisms that are
responsive to changes in the environment and consider the issue of concept drift are
STAGGER (Schlimmer and Granger, 1986), COBBIT (Kilander and Jansson, 1993)
and recently another learning mechanism was introduced by Widmer and Kubat
(Widmer and Kubat, 1996). Another two systems that are related to situated learning in
the view of dynamic and incremental learning are discussed: BRIDGER (Reich, 1993)
and PERSPECT (Duffy and Kerr, 1993; Kerr, 1993).

BRIDGER (Reich, 1993) is a domain independent learning system for knowledge
acquisition and performance improvement built on the foundations of the concept
formation program COBWEB (Fisher, 1987), but extended along several dimensions.
BRIDGER’s framework is based on an assumption that designing is a sequence of five
tasks: problem analysis, synthesis, analysis, redesign and evaluation executed
sequentially with one feedback loop. It is a system built for assisting in the conceptual
designing of cable-stayed bridges. BRIDGER uses an incremental learning scheme for
the creation of hierarchical classification tree and ECOBWEB is a major component of
it. It partially implements the constructive induction mechanism (Reich, 1991) for the
incremental concept formation. Constructive induction (Rendell, 1988) is defined, as the
creation of useful features not existing in the original property-value description of
examples. In constructive induction, collection of design examples are used by a
learning system to produce a sequential collection of design rules, each representing
different semantics. Within the view of situatedness, design knowledge constructed in
BRIDGER is unrelated to its locus.

PERSPECT (Duffy and Kerr, 1993; Kerr, 1993) was originally developed to
demonstrate and evaluate the design utility of customised viewpoints. The system is a
designing tool that aims to support the experiential knowledge in numerical engineering
design. Designers require different viewpoints from past design and abstractions in
order to facilitate the effective utilisation of past designs to suit a designer's particular
needs. PERSPECT is a dynamic design tool capable of automating the rationalisation of
past designs to suit a designer's particular needs and support the automatic generation of
customised design perspectives. The rationalisation of past designs is motivated by the
belief that, within the abundant explicit information of individual past designs, there
exists a wealth of implicit knowledge which should be made explicitly available to the
designer.

Recently, Duffy and Duffy (1996b) utilised PERSPECT within the concept of
controlled computational learning. PERSPECT is used within the concept of shared
learning. PERSPECT presents how the activities of designing and learning are coupled.
That is, where the designer, at various designing stages, develops a design solution,
feeds such learned knowledge back to some store of experiential knowledge and reuses
this knowledge to aid in the evolution of an acceptable design solution. During the
development of a design solution from an initial stage to a design solution, some of the
learned knowledge will transform to longer-term experiential knowledge and some will
only be used in designing within the next stages of development. Thus, the experiential

Chapter 2: Background 27

knowledge reflects the knowledge that will be reused in later design scenarios, whereas
the transient knowledge learned will only be used to assist in the evolution of the design
to a final stage.

PERSPECT's functionality (Duffy and Duffy, 1996a) has been used to explore the
possibility of realising the learning assistance in IDA (MacCallum et al., 1987),
Intelligent Design Assistant. The collaboration between the two players of intelligent
CAD (the designer and IDA), provides more effective learning capabilities. Shared
learning requires more controlled computational learning to ensure that computers learn
design knowledge that is relevant, useful, and understandable to designers based on
their required knowledge needs. Controlled computational learning should not be
confused with supervised learning. Controlled computational learning emphasises that
designers should be able to manipulate computational learning such that the resulting
knowledge mirrors what is required by designers to either assist the problem solving or
to enhance their understanding/learning. Controlled computational learning has been
proposed as one means of achieving shared learning. PERSPECT is related to situated
learning in designing but is significantly different. PERSPECT attempts to reflect the
dynamic nature of learning in designing through the generation of multiple and dynamic
generalisations, to reflect and capture designers' changing interests.

2.5.2 Accommodating the situatedness within computational systems
in designing

There are attempts to integrate some views of the concept of situatedness with learning
systems that provide a dialogue environment for designers learning from prior designs
such as Case-Based Reasoning (CBR) (Sooriamurthi and Leake, 1994; Oehlmann et al.,
1995). CBR provides a reminding environment to assist designers to use past designs
instead of designing from scratch. Since designer's actions depend upon the current
situation, the automated adaptation of a design case is difficult. Because the situations
vary over time, it is not possible to predefine the adaptation process of the system to
involve unknown situations. However, the process of adaptation can be defined within a
particular range of expected situations. A primary difference between such systems and
the proposed situated learning approach is that design situations are not predefined but
rather encountered, constructed and modified during the process of designing.

Another attempt such as Situated Design (Pfeifer and Rademarkers, 1991; Rademakers
and Pfeifer, 1992; Hofmann et al., 1993; Müller and Pfeifer, 1997; Lueg, 1999)
capitalises on the notion of humans as situated agents. Situated Design can be seen as
the initialisation of a process of continuous learning and change. The focus is on support
of learning, not rationalisation or automation. Situated Design accounts for situatedness
and entails that the design methodology cannot be limited to the task at hand but has to
take into account the environment in which the task has to be performed. Situated
Design has been applied in several large cooperative ventures with industrial partners
aiming at inducing change by enabling and enhancing communications (Müller and
Pfeifer, 1997). Another application of Situated Design is to provide support for human
information seeking behaviour in order to cope with the information load (Lueg, 1997;
Lueg, 1999). From a situated perspective on human-machine interface, designing in the
context of the Internet services, a situated information filtering through an adaptive

Chapter 2: Background 28

USENET interface was introduced. Also, there is ongoing research focusing on the
concepts of situatedness of representations (Stahl, 1993; Wheeler, 1994; Rosenschein
and Kaelbling, 1995; Morrison, 1998), situated interaction (Oehlmann et al., 1995;
Rappaport, 1998), information retrieval (Hert, 1997) and situated autonomous agents
(Maes, 1990; Errico and Aiello, 1996; Müller and Pecchiari, 1996; Beyer, 1998; Grecu
and Brown, 1998; Gero and Fujii, 1999).

Chapter 3

Multiple Representations

A Platform for Situated Learning in Designing

"Realities have many different properties or attributes and each representation abstracts
only a finite subset" (Akin, 1986)

This Chapter introduces the concept of multiple representations and its use in designing
while designers construct their design artefacts. Different representations are needed in the
design process when considering different issues. Some specific representations favour
specific outcomes and since it is not known in advance which outcomes may be required so
it is not known in advance which representation to use. The complexity of the situation is
hard to grasp when only a single representation is available. This is particularly true when a
rich representation of the situation is required and the represented situation is dynamic. The
processes of developing multiple representations of a single object are introduced. An
example of developing multiple representations within the domain of architectural shapes in
the form of a floor plan is presented. The Chapter proposes the development of multiple
representations as a platform for situated learning in designing.

The ability to adequately represent a design is crucial to reasoning about it.
Representations encompass a wide range of possible ways to store information about an
object, its function, behaviour and structure. Designing is concerned with the generation
of design descriptions of potential artefacts in response to statements about the qualities
to be exhibited by those artefacts (Coyne et al., 1990). A useful characterisation of
designing is introduced within a framework model built around function, behaviour and
structure (Gero, 1990). The work in this thesis focuses on representing knowledge of
design artefacts within the domain of architectural shapes in the form of floor plans.
This knowledge includes decompositional knowledge, physical properties and structural
knowledge of shapes. Decompositional knowledge arises from the fact that an object
may be composed of parts, each of which may be composed of subparts, and so on. A
grouping of parts may be thought of as a component of an object. Physical properties
are represented by describing an elementary object in terms of its geometrical
properties. Components may have similar properties, which are derived from the
properties of their parts. Structural knowledge concerns the nature of the
interconnections or relationships between the components (Babin and Loganantharaj,
1991). In designing, these relationships assume a central role. For example, in

Chapter 3: Multiple Representations 30

architectural plans, the individual components are usually not as interesting as the
relationships among them (Mackellar and Peckham, 1992).

3.1 Multiple Representations while Designing

A design brief is an input into the design process. The design brief describes the client’s
requirements. The output of the design process is generally a set of contract documents,
consisting of specifications and drawings. Thus, both the input and the output of the
design process are representations that describe and depict an artefact or process. So,
designing at some abstract level may be treated as the process of transforming one set of
representations, the design brief, into another set of representations, the contract
documents. However, not only the inputs and outputs of the design process are
representations but the intervening transformations are also carried out on
representations. Because designing typically occurs in situations where it is not possible
or feasible to manipulate the environment directly, designers manipulate representations
of the environment (Goel, 1995). Designers often employ standard transformations to
manipulate structures. A transformation may be defined as an operation which changes
one representation into another, while preserving certain properties. Architects are
familiar with geometric transformation, rotation and reflection which may be employed
to position instances of structures in compositions.

Representations may include objects and relationships, that establish significant links
from one object to another; moreover, the representation used may influence the result
obtained. Each representation is usually associated with a range of desired applications
and is a partial view of the object it represents (Davis et al., 1993). This partial view is
an interpretation of the object often aimed at a particular application or purpose. There
is no one representation that allows detailed consideration of all possible concerns. One
way to represent diversity is through the use of multiple representations. So it is often
convenient and sometimes necessary to use a number of different representations.
Equally important, in support of multiple representations, is that some specific
representations favour specific outcomes and since it is not known in advance which
outcomes may be required so it is not known in advance which representation to use.
Using the approach of multiple representations is one way of overcoming this problem.
In such an approach, each representation is suitable for a certain class of functions,
because it allows a different interpretation of what has been drawn (Damski, 1996).
Some of the roles that multiple representations play in designing include (Goldschmidt,
1997): interpretation, transformation and emphasis. The complexity of a situation is
hard to grasp when only a single representation is available. This is particularly true if a
rich representation of the situation is required.

The multiple representations approach is a cognitive strategy that designers and solvers
of ill-structured problems adopt, because it facilitates the intricate process of creating
links (Goldschmidt, 1997). According to Schön (1983), the designer is engaged in
“graphical conversation with the design” and according to Lawson (1980), “the designer
has a conversation with the drawing”. These transactions with the external
representation illuminate the visual mental process of designers. Where graphic media,
such as design sketches, are used by the designer, design moves are “a series of actions”

Chapter 3: Multiple Representations 31

of the designer which result in transformations of a representation (Lawson, 1980; Akin,
1986). In the process of conceptual designing, various moves by designers are
encountered and expressed in graphical design development in the form of different
representations reflecting transitions of states from one representation to the other.
Typical processes can be interpreted as types of modification of the representation. For
instance, the redescription process is one way in which designers cognitively exploit
graphical representations (Oxman, 1995). In the re-representation process (a
psychological theory of creativity), (Karmiloff-Smith, 1993), human beings explore
new modifications through the externalisation of knowledge structures in
representations. Re-representation of a form is possible only after an underlying
representational structure of that form has been externalised and made explicit in the
drawing. It also provides a changing pattern in the graphical medium. According to
Arnheim (1969), perceptual cognitive operations in designing include distinguishing
structural relationships of the images in the design representation. This includes the
interpretation and conceptualisation of structural relationships. Spatial Gestalt and
structural qualities are significant in conceptual designing.

Oxman (1997) demonstrated the significance of the concept of multiple representations
in designing. According to Oxman (1997), the designer appears to be capable of
exploiting these various underlying representational structures. Designers constructed
explicit representational structures that were implicit in a particular design form (in this
thesis, an architectural floor plan), during their moves as the design evolved. She
reported her findings from an experiment aimed at studying the way designers deal with
the richness of information in graphical representations. Designers were found to be
able to extract various abstracted explicit representations of the existing design based on
their own domain of knowledge. These abstractions include typological, organisational
and morphological principles and functional relationships. They were able to externalise
and categorise their graphic manipulations conceptually despite the fact that drawings
tend not to provide explicit representational information to support such decomposition.
Oxman (1997) concluded that designers utilise multiple representations of underlying
conceptual structures. These multiple representations serve the designer as supportive
representations for design manipulations. It is the structuring quality of these multiple
representations which appear to support design manipulation.

Schön and Wiggins (1992), based on the analysis of a number of design protocols,
suggest that sketching presents a visual display which can be potentially perceived in
different ways; that is, the sketch can be reinterpreted. These perceptual re-
interpretations produce a drawing episode which appears to indicate that the drawing is
based on the image in the “mind’s eye” that resulted from the interpretations of the
original image. Perceptual interpretations are referred to as "moves" while the
judgements of the consequences and implications of the move are referred to as
"seeing". They argue that designing consists of sequences of seeing-moving-seeing with
the unintended consequences of moves allowing the designer to bring more facets of
their knowledge into conscious thought allowing them to handle the complexity
associated with ill-defined problems. They argue further that it is the interconnectedness
between the various domains of knowledge relevant to a design that brings the
unintended consequences of a move into consciousness and that it is the degree of
interconnectedness which differentiates between an expert's and novice's design

Chapter 3: Multiple Representations 32

knowledge. This conception is very similar to Goldschmidt’s view (Goldschmidt, 1991;
Goldschmidt, 1994).

Multiple representations can be viewed as multiple seeing through the concept of
seeing-moving-seeing. These ways of seeing involve an appreciation process to see
what needs to be focussed on from what is there at the time of seeing (Schön and
Wiggins, 1992). For instance, top-down processing affects the way geometric features
of shapes can be seen as in the case of Figure 3.1. For many people the triangles seem to
point to the right. But if we try to perceive them as pointing upward and slightly left,
this can be done with ease. Or, we can perceive the triangles as pointing downward and
left. While doing so, the external representation by itself does not change but rather the
representations we construct from it are changing depending upon our focus of what is
there in the external representations.

Figure 3.1 Look at the display of triangles, in which directions do they point? Can you perceive
the direction differently? (Solso, 1997).

In the conceptual aspects of designing, multiple representation could play a critical role.
It provides opportunities for designers to conceptualise their designs differently. Using
multiple representations allows for different interpretations of what has been drawn. In
designing, representations are constructed on the fly during the course of perception and
no single representation is firmly and intentionally known in advance to be used.
Different perceptions are akin to reformulations of the design artefact and consequently
multiple representations are constructed. This allows seeing the design from different
perspectives and offering different moves. Hence, different relationships between
design elements across the representations may be discovered and learned. These
relationships are beneficial in offering different ways of reasoning. Multiple
representations and reasoning related to designing are important to endow the computer
with the ability to learn these relationships during the design process. An example of
how a design object (a square), can be seen and represented in many different ways is
shown in Figure 3.2. A square can be represented as a set of four points; a set of four
line segments; a set of four infinite lines; and the perimeter of a given area or a region
defined by four half planes. Different relationships might appear from these different
representations. Some of the possible representations of an external representation of
the square in Figure 3.2(a) are shown in Figure 3.2(b). Each of which is suitable for one
or more applications. The concept of multiple representations of a single object maps
the fluid design environment. It also maps the "stepping out of representational flatland"
in situated cognition (Clancey, 1991; Smith, 1999) in which representations are not
stored, retrieved and manipulated but rather constructed in the course of perception
where perception, cognition and learning are associated.

Chapter 3: Multiple Representations 33

Figure 3.2 (a) Image of a square, (b) some of the possible representations of a square.

Landau (1996) suggested that objects could be represented in terms of different
geometric descriptions or shape structures. Within the domain of architectural shapes,
during the process of designing, a designer might encounter many different situations
according to his focus of attention at each stage during the design process to reach the
final product. Different representations of the design artefact may have been developed
during the process of designing. Figure 3.3 illustrates the design descriptions of a final
product: the plan, elevation and sections of Villa Capra, Italy. Different representations
that could have been interpreted by the designer at different stages in the designing of
Villa Capra are illustrated in Figure 3.4.

Figure 3.3 Various descriptions of Villa Capra, Vicenza, Italy (Clark and Pause, 1996).

(a)

(b)

Elevation 1Floor Plan

Section A Section B

Chapter 3: Multiple Representations 34

Figure 3.4 Some of the possible representations that might be interpreted by the using the
platform proposed in this thesis: (a) lines, (b) blocks, (c) reflected components, (d) rotated

components, (e) centrality and (f) background/foreground.

3.2 Multiple Representations of an Architectural Shape

Drawings have been used to represent physical and abstract ideas, simple and complex
knowledge, local and universal information. The most consistent finding in the design
area is that drawings are associated with reinterpretation or the emergence of new ways
of seeing the drawing. The process of designing involves a recursive sequence of
activities involving, thinking, imagery, drawing, reinterpretation and the access of
different types of knowledge. The knowledge accessed can be perceptual and associated
with the physical attributes of the design represented in a drawing (Purcell and Gero,
1998).

Fundamental to any computer-aided system in designing is the need to represent objects
under consideration. Currently, CAD systems use numerical representations for
drawings. This representation limits designers to use these systems only as drawing
platforms that are not helpful at a more conceptual level of designing. Further, such
representational systems do not readily lend themselves to some of the shape analysis
tasks required by designers, such as topological relationships and shape transformations.
Symbolic representation is dimensionless when compared to Cartesian spaces. When
those objects are conceptual, a strictly symbolic representation is sufficient. It endows
computer-aided systems in designing with basic tools for conceptual reasoning such as
topological reasoning, directional reasoning, and shape emergence (Gero and Yan,
1994; Damski, 1996).

(a) (b) (c)

 (d) (e) (f)

Chapter 3: Multiple Representations 35

3.2.1 Initial representation of a shape

One of the forms of the designing outcome is a graphical description of a design
artefact. In the basic case, this graphical description consists of line drawings that
determine the shape. Stiny (1980) defines the shape with respect to a Cartesian
coordinate system in which coordinates are used as primitives to represent the shape
that is made up of line segments and a set of labelled points. In this way, a line segment
is described by the coordinates of its two endpoints. This method of representing shapes
as a set of discrete endpoints may not provide an appropriate foundation for shape
recognition and does not cope with emergent subshapes because geometric properties of
shape are not explicitly applied and are dependant upon calculating accuracy (Tan,
1990). The concept of construction lines has been used to represent shapes where
shapes are represented as contiguous line segments connected at end-points or
intersection as in a chain (Tan, 1990). As a result, emergent shapes are defined as a list
of contiguous line segments.

In this thesis, infinite maximal lines are used as representational primitives to construct
a symbolic representation as an initial representation of the shape to support shape
recognition. Gero (1992b) and Gero and Yan (1993) have developed the notion of
infinite maximal lines for representing a shape. This symbolic representation has been
successfully implemented for discovering emergent shapes in two- and three-
dimensional domains (Damski and Gero, 1994a; Gero and Yan, 1994). A line segment
in a shape is maximal whenever no other line segment in the shape contains it. An
extended maximal line is a line segment within which at least one maximal line is
embedded. An infinite maximal line is the infinite line in which an extended maximal
line is embedded. There are three kinds of properties of interest of infinite maximal
lines: topological properties, geometrical properties and dimensional properties.

Drawings may be described in different ways by decomposing them into parts that may
be ordered hierarchically or in some other way, and by assigning these parts to
categories to clarify intention from different points of view (Stiny, 1990b). For
demonstrating the development of a set of possible representations from the initial
representation of a shape, the outline of the entries and the hexagon hall of the
Sepulchral Church, Sir John Soane, 1796 (Jun, 1997) as shown in Figure 3.5 was
chosen as an example. Using infinite maximal lines as representational primitives, the
general form of the symbolic representation of shapes is:

Si = {Nl ; [ijk]}

where Nl is the number of infinite maximal lines constituting a shape SI; and [ijk] is the
description of the intersections of infinite maximal lines defining that shape.
Alternatively, Si = {Nl ; [li]} where [li] is the description of the constraints on infinite
maximal lines defining that shape: topological, geometrical and dimensional.
Topological constraints concern the structure within which intersections and line
segments are organised. Geometrical constraints on infinite maximal lines relate to
their parallelarity, perpendicularity and skewness. Dimensional constraints are in terms
of lengths of line segments and their proportions to each other. An example is
presented in Figure 3.6.

Chapter 3: Multiple Representations 36

Figure 3.5 The outline of the entries and the hexagon hall of the Sepulchral Church, Sir John
Soane, 1796, (Jun, 1997).

Si = {Nl ; [ijk]}
S1 = {12; [iab, ibc, icd, ide, ief, ifg, igh, ihj, ijk, ikm, imn, ina]}
Si = {Nl ; [li]}

S1 = {12; [la, lb, lc, ld, le, lf, lg, lh, lj, lk, lm, ln],
la // lg, lb // ln, lc // lj, ld // lf, le // lm, lh // lk,
ln ⊥ l a, la ⊥ l b, ld ⊥ le, le ⊥ lf, lh ⊥ l j, lj ⊥ lk ,
A(lm, ln) = A (l b , lc) = A(lc, ld) = A (lf, lg) = A (lg, lh) = A (lk, lm),
d(ina, iab) = d(ide, ief) = d(ihj, ijk), d(iab, ibc) = d(icd, ide) = d(ief, ifg) =
d(igh, ihjj) = d(ijk, ikm) = d(imn, ina), d(ibc, icd) = d(ifg, igh) = d(ikm , imn)}

Where A = angle between two line segments
li = infinite maximal lines

d = distance or length between two intersections of infinite maximal lines
ijk = intersection of two infinite maximal lines lj and lk
// = lines are parallel
⊥ = lines are perpendicular

Figure 3.6 Symbolic representation using infinite maximal line, la to ln, as representational
primitives.

The similarity among line segments is one way of grouping the structural elements of
line segments in the initial representation. The similarity measurements are based upon

Chapter 3: Multiple Representations 37

the distances between the intersections of each two maximal lines defining line
segments on the boundary of the shape, distances from the centre of that line segment
and the centre of the whole shape. Labelling of line segments based on this kind of
similarity is illustrated in Figure 3.7.

S1 = {12; [la , lb , lc , ld , le , lf , lg , lh , lj , lk , lm , ln]}

The lengths of line segments embedded in la, le and lj are equal and their distances from the
centre of the shape are also equal; and we have labelled them as x

1. The same with both lb, ld,
lf , lh, lk and ln which we have labelled as x

2 and lc , lg and lm labelled as x
3
. The following

notations are used in the syntax of representations: Ni :: Sj is the re-representation number i for
the initial representation of the shape Sj, “()” indicates a group of line segments that are
unbounded and “[]” indicates a group of line segments that are bounded which means the line
segments are sequentially connected to form a closed shape.

S1= {12; [x
1
, x

2
, x

3
, x

2
, x

1
, x

2
, x

3
, x

2
, x

1
, x

2
, x

3
, x

2
]}

Figure 3.7 Labelling line segments with x1, x2 and x3 based on similarity measurements.

3.2.2 Development of multiple representations

Alternate representation makes new interpretations possible. Interpretations are only
implicit in an existing representation (Damski and Gero, 1994b). Interpretation is the
process of inferring results from a given object in a particular representation. Therefore,
re-representation allows implicit properties in one representation to become explicit in
other representations. Different representations may be derived from the same initial
representation and can serve as a foundation upon which to develop many different
kinds of inference. Drawings such as architectural floor plans can be considered
informal representations, based on a loose set of conventions, in which multiple
representations are embedded and can be derived (Chase, 1993).

There are different ways of developing multiple representations of an initial
representation of a shape. The processes utilised here for developing multiple
representations, as shown in Figure 3.8, commence with representing a design
composition in an initial representation as shown in Figure 3.6. This initial
representation of the shape may be treated as being composed of many sub-elements.
The composition of sub-elements can be interpreted differently. Each individual
representation could be composed of repeated or common structural properties in a

S1

Chapter 3: Multiple Representations 38

group of objects where a single object in a group is represented in terms of different
attributes. Developing multiple representations can be through decomposing the initial
representation to its components and grouping the objects based upon the commonality
of their structural properties. The decomposition of design drawing into different
structures of knowledge is a decomposition of different types of knowledge. Design
drawings are not readily decomposable into separate representations, or structures. In
order to isolate implicit representational structures it is important to identify the explicit
representations which support visual reasoning. Since drawings are not explicitly
structured according to these representations, it is significant to externalise them in re-
representation. The decomposition in the initial representation can be of either parts of
shape boundary or shape areas. The decomposition of the shape boundary into parts
results in line segments that are regrouped alternatively based on the commonality of
their structural properties. This leads to developing a set of representations of
unbounded n-sided shapes, as shown in Section 3.2.2.1.

Figure 3.8 Different processes of developing multiple representations of a single shape.

Other ways of developing multiple representations from the initial representation
include changing the representation of that shape through structure interpretation.
Structural interpretation concerns changing the original shapes into new ones by
modifying their structures. Structure is concerned with the components of objects and
their relationships (Gero, 1990). In this process new structural properties that were
implicit in the initial representation may become explicit in the changed representations.
This has been defined as one form of visual emergence. The decomposition of the
boundary of the design composition into areas within that boundary results in sets of
groups of bounded n-sided shapes where emergent shapes could appear. This may be
achieved through alternative connections between the vertices of the shape. A set of
representations can be developed from grouping these bounded n-sided shapes based
upon their congruency as shown in Section 3.2.2.2.

Base
Representation

Visible
Environment

“Shape”

Visual
Emergence

Emergent
Shapes

Decomposition
and Grouping

Bounded n-sided
Shapes

Unbounded n-sided
Shapes

Shape
Boundary Shape

Areas

Figure and
Ground

Convex
Hull

Convex
Hull

Chapter 3: Multiple Representations 39

Alternatively visual emergence could be facilitated to develop a set of multiple
representations. One way for visual emergence to occur is through grouping the shapes
produced through the intersections of line segments of the infinite maximal lines of the
shape as shown in Section 3.2.2.3. Furthermore, the concept of figure and ground is
used to develop alternative representations as shown in Section 3.2.2.4. Using these
different ways, we have developed 28 representations of the exemplar shape as a set of
some of the possible representations from the initial representation of the shape.

3.2.2.1 Unbounded n-sided subshapes representations

Unbounded n-sided subshapes are created through decomposing the boundary of the
shape into line segments and regrouping line segments that are connected to each other
forming open shapes based upon the commonality of their structural properties. In
unbounded two-sided subshapes the similarity measurements are based upon the
repetitions of two contiguous line segments, distances between the centres of their
maximal lines to the centre of the whole shape. Thus, other ways to re-represent the
shape from its initial representation are shown in Figures 3.9(a) to 3.9(d).

S1 = {[x1, x2, x3, x2, x1, x2, x3, x2, x1, x2, x3 , x2]}
N1 :: S1 = {[3((x1, x2), (x3, x2))]}
N2 :: S1 = {[3((x2, x3), (x2, x 1))]}

Figure 3.9 Two representations, N1 and N2, of unbounded two-sided subshapes; (a) and (c)
have the same description of the representation N1; (b) and (d) have the same description of the

representation N2.

The same similarity measures could be applied with three contiguous line segments.
Examples of different representations of unbounded three-sided subshapes are presented
in Figures 3.10(a) to 3.10(c). Similarly, other representations of four and five-sided
unbounded shapes are as shown in Figures 3.11 and 3.12 respectively.

 (a): N3 (b): N4 (c): N5 (d): N6

(a): N1 (b): N2 (c): N1 (d): N2

Chapter 3: Multiple Representations 40

S1 = {[x1, x2, x3, x2, x1, x2, x3, x2, x1, x2, x3, x2]}
N4 :: S1 = {[3((x1, x2, x3), (x2))]}
N5 :: S1 = {[3((x3, x2, x1), (x2))]}
N6 :: S1 = {[3((x1), (x2, x3, x2))]}
N7 :: S1 = {[3((x2, x1, x2), (x3))]}

Figure 3.10 Four representations, N3 to N6, of bounded three-sided sub-shapes.

S1= {[x1, x2, x3, x2 , x1, x2, x3, x2 , x1, x2, x3 , x2]}
N7 :: S1 = {[3(x1, x2, x3, x2)]}
N8 :: S1 = {[3(x2, x3, x2, x1)]}
N9 :: S1 = {[3(x3, x2, x1, x2)]}
N10 :: S1 = {[3(x2, x1, x2, x3)]}

Figure 3.11 Four representations, N7 to N10, of unbounded four-sided subshapes.

N11 :: S1 = {[x1, (x2, x3, x2, x1, x2), x3, (x2, x1, x2, x3 , x2)]}
N12 :: S1 = {[x1, x2), x3, (x2, x1, x2, x3, x2), x1, (x2, x3, x2]}
N13 :: S1 = {[(x1, x2, x3, x2, x1), (x2, x3 , x2), x1, (x2 , x3 , x2)]}
N14 :: S1 = {[x1, x2), (x3, x2, x1, x2, x3), (x2, x1 , x2), x3 , (x2]}
N15 :: S1 = {[(x1, x2, x3), (x2, x1, x2, x3, x2), (x1, x2, x3), x2]}

Figure 3.12 Five representations, N11 to N15, of unbounded five-sided subshapes.

 (a): N7 (b): N8 (c): N9 (d): N10

(a): N11 (b): N12 (c): N13

(d): N14 (e): N15

Chapter 3: Multiple Representations 41

3.2.2.2 Bounded n-sided subshapes representations

Bounded n-sided subshapes are generated through decomposing the initial
representation of the shape into areas or subshapes within the boundary of the shape.
The decomposition can be through connecting the vertices of the shape alternatively to
create circuits (n-sided bounded subshapes). The concept of re-representing the shape is
different here because the structural knowledge in the initial representation is changed.
Some structural elements embedded in the initial representation were only implicit. As a
result new subshapes that existed only implicitly in the shape before and have never
been explicitly indicated are emerged. Emergence is defined as the process of making
explicit unexpected properties that previously were only implicit (Gero et al., 1995).
Examples of bounded four-sided subshapes (emergent shapes), consisting of various
numbers of line segments joined together to form closed shapes are [x2, x1, x2, x1]
labelled as [S2] and [x3, x1, x4, x1] labelled as [S3] as shown in Figures 3.13. In this
representation and onwards notice that different labels of other line segments such as x4

have been introduced. This is because the length embedded in its line segments is not
equal to any of those used before and the distance from its centre to the centre of the
whole shape is different. The subshapes that were created alternatively are grouped
based on their congruency. A representation consists of a mixture of bounded four-sided
shapes and the remaining parts from the original shape is shown in Figure 3.14.
Different examples of representations from mixtures of three and four-sided shapes are
shown in Figure 3.15.

S1 = {12; [iab, ibc, icd, ide, ief , ifg, igh, ihj, ijk, ikm , imn, ina]}
S1 = {[imn, ina, iab, ibc], [icd, ide, ief, ifg], [igh, ihj, ijk, ikm], [ibc, icd, ifg, imn], [igh, ikm, imn, ifg]}
S1 = {[x2, x1, x2, x1], [x2, x1, x2, x1], [x2, x1, x2, x1], [x3, x1, x4, x1], [x3, x1, x3, x4]}
S1 = {[S2], [S2], [S2], [S3], [S3]}
N16 :: S1 = {3[S2], 2[S3]}

Figure 3.13 An example of a representation N16 consisting of bounded four-sided subshapes.

S1 = {[imn,ina,iab, ibc], [icd , ide , ief , ifg], [igh, ihj , ijk , ikm], [ibc, icd, ifg, igh, ikm , imn]}
S1 = {[x2, x1, x2, x1], [x2, x1, x2, x1], [x2, x1, x2, x1], [x3, x1, x3, x1,x 3, x1]}

N16

N17

Chapter 3: Multiple Representations 42

S1 = {[S2], [S2], [S2], [S4]}
N17 :: S1 = {3[S2], [S4]}

Figure 3.14 An example of a representation N17 consisting of bounded four-sided subshapes and
the remaining part of the initial shape.

S1 = { [imn,ina,iab, ibc],[icd , ide, ief , ifg], [igh, ihj , ijk , ikm], [imn, ibc, ikm], [icd, ifg, igh], [ibc,
icd, ikm], [icd, igh, ikm]}

S1 = { [x2, x1, x2, x1], [x2, x1, x2, x1], [x2, x1, x2, x1], [x1, x5, x3], [x1, x3, x5], [x1, x4, x5], [x5, x1, x4]}
S1 = { [S2], [S2], [S2], [S5], [S5], [S6], [S6]}
N18 :: S1 = {3[S2], 2[S5], 2[S6]}

S1= { [S2], [S2], [S2], [S6], [S6], [S7], [S7]}
N19 :: S1 = {3[S2], 2[S6], 2[S7]}

Figure 3.15 Two representations N18 and N19 are mixtures of bounded three and four-sided
subshapes.

3.2.2.3 Emergent shapes

Visual emergence is the process of "seeing" visual structures that are not explicitly
represented. As a consequence, other representations can be developed (Gero et al.,
1995; Jun and Gero, 1998). Emergent shapes are introduced through interpretative and
perceptual processes concerned with arriving at alternative descriptions of the shape. A
transformational process uses the existing pattern for generating new structures in a
variety of ways (Soufi and Edmonds, 1996). Alternative groupings of subshapes
consisting of the intersections of infinite maximal lines provide ways of arriving at
alternative descriptions of the shape and generate new structures under which new
emergent shapes are developed. Examples of emergent shapes are illustrated in Figures
3.16(a) to 3.16(g) that show emergent shapes as a result of a process of visual
emergence but not necessarily as may be perceived by human observers.

(a): N18 (b): N19

 (a): N20 (b): N21

Chapter 3: Multiple Representations 43

S1 = {[imn, ina, iab, ibc, icd, ide, ief, ifg, igh, ihj, ijk, ikm]}
S1 = {[ina, iab, ibc, i6, imn], [ibc, icd, i2, i1, i6], [ide, ief, ifg, i2 , icd], [ifg, igh, i4, i3, i1], [ihj, ijk, ikm, i4,

igh], [ikm, imn, i6, i5, i4], [i1, i2, i3, i4 , i5, i6]}
S1 = {[x1, x2, x11, x11, x2], [x3, x11, x11, x11, x11], [x1, x2, x11, x11, x2], [x3, x11, x11, x11, x11], [x1,

x2, x11, x11, x2], [x3, x11, x11, x11, x11], [x11, x11, x11, x11, x11, x11]}
S1 = {[S14], [S15], [S14], [S15], [S14], [S15], [S16]}
N20 :: S1 = {3[S14], 3[S15], [S16]}

S1 = {[imn, ina, iab, ibc , icd , ide , ief , ifg, igh, ihj, ijk, ikm]}
S1 = {[ina, iab, ibc, i6 , imn], [ibc, icd, i1], [icd, i2, i1], [ibc, i1, i4], [ide, ief, ifg, i2, icd], [ifg, igh, i3],

[ifg, i3, i2], [igh, i3, i6], [ihj, ijk, ikm, i4 , igh], [ikm, imn, i5], [ikm, i4, i5], [imn, i5, i6], [i1, i2, i3,
i4 , i5 , i6]}

S1 = {[x1, x2, x11, x11, x2], [x3, x11, x11], [x11, x11, x11], [x11, x11, x11], [x1, x2, x11, x11, x2], [x3,
x11, x11], [x11, x11, x11], [x11, x11, x11], [x1, x2, x11, x11, x2], [x3, x11, x11], [x11, x11, x11],
[x11, x11, x11], [x11, x11, x11, x11, x11, x11]}

S1 = {[S14], [S18], [S17], [S17], [S14], [S18], [S17], [S17], [S14], [S18], [S17], [S17], [S16]}
N21:: S1 = {3[S14], 3[S18], 6[S17], [S16]}

S1 = {[imn, ina, iab, ibc ,icd , ide , ief , ifg ,igh, ihj , ijk , ikm]}
S1 = {[ina, iab, ibc, i6 , imn], [ibc, icd, i1], [ide, ief, ifg, i2 , icd], [ifg, igh, i3], [ihj, ijk, ikm, i4 , igh],

[ikm, imn, i5], [ibc, i1, icd, i2 , ifg , i3, igh , i4 , ikm, i5 , imn , i6]}
S1 = {[x1, x2, x11, x11, x2], [x3, x11, x11], [x1, x2, x11, x11, x2], [x3, x11, x11], [x1, x2, x11, x11, x2],

[x3, x11, x11], [x11, x11, x11, x11, x11, x11 , x11, x11, x11, x11, x11, x11]}
S1 = {[S14], [S18], [S14], [S18], [S14], [S18], [S19]}
N22 :: S1 = {3[S14], 3[S18], [S19]}

S1 = {[imn,ina,iab, ibc ,icd , ide , ief , ifg ,igh, ihj , ijk , ikm]}
S1 = {[ina, iab, ibc, i6 , imn], [ide, ief, ifg, i2 , icd], [ihj, ijk, ikm, i4 , igh], [ibc, icd, i2 , ifg , igh , i4 , ikm,

imn , i6]}
S1 = {[x1, x2, x11, x11, x2], [x1, x2, x11, x11, x2], [x1, x2, x11, x11, x2], [x3, x11, x11, x3, x11, x11 , x3,

x11, x11]}
S1 = {[S14], [S14], [S14], [S20]}
N23 :: S1 = {3[S14], [S20]}

(c): N22 (d): N23

(e): N24 (f): N25 (g): N26

Chapter 3: Multiple Representations 44

S1 = {[imn,ina,iab, ibc ,icd , ide , ief , ifg ,igh, ihj , ijk , ikm] }
S1 = {[ina, iab, ibc, iI , i6 , i5 , imn], [ibc, icd, i1], [ide, ief, ifg, i3 , i2 , iI , icd], [ifg, igh, i3], [ihj, ijk, ikm,

i4 , igh], [ikm, imn, i5], [i1, i2, i3, i4 , i5 , i6]}
S1 = {[x1, x2, x11, x11, x11, x11, x2], [x3, x11, x11], [x1, x2, x11, x11, x11, x11, x2], [x3, x11, x11], [x1,

x2, x11, x11, x11, x11, x2], [x3, x11, x11], [x11, x11, x11, x11, x11, x11]}
S1 = {[S21], [S18], [S21], [S18], [S21], [S18], [S16]}
N24 :: S1 = {3[S21], 3[S18], [S16]}

S1 = {[imn,ina,iab, ibc, icd , ide , ief , ifg, igh, ihj , ijk , ikm] }
S1 = {[imn, ina, iab, ibc, iI , icd , ide , ief , ifg, i3, igh, ihj , ijk , ikm, i5], [ibc, icd, i1], [ifg, igh, i3],

[ikm, imn, i5]}
S1 = {[x2, x1, x2, x11, x11, x2, x1, x2, x11, x11, x2, x1, x2, x11, x11], [x3, x11, x11], [x3, x11, x11], [x3,

x11, x11]}
S1 = {[S22], [S18], [S18], [S18]}
N25 :: S1 = {[S22], 3[S18]}

S1 = {[imn,ina,iab, ibc, icd , ide , ief , ifg, igh, ihj , ijk , ikm] }
S1 = {[ina, i11, imn], [i12, iab , ibc], [icd , ide, i7], [i8, ief , ifg], [igh, ihj, i9], [i10, ijk, ikm], [imn, i11,

i12, ibc, icd, i7, i8, ifg, igh, i9, i10, ikm]}
S1 = {[x13, x2, x12], [x13, x2, x12], [x13, x2, x12], [x13, x2, x12], [x13, x2, x12], [x13, x2, x12], [x14, x12,

x3, x12, x14, x12, x3, x12, x14, x12, x3, x12]}
S1 = {[S23], [S23], [S23], [S23], [S23], [S23], [S24]}
N26 :: S1 = {6[S23], [S24]}

Figure 3.16 Seven representations from N20 to N26 include emergent shapes as a result of an
emergence process.

3.3.2.4 Figure and ground

The figure and ground perception hypothesis developed in Gestalt psychology explores
other aspects of how our visual system functions. It seems that our visual system
simplifies the visual scene into a figure that we look at and a ground that is everything
else in the scene that forms the background. For instance, the shape shown in Figure
3.17(a) could be perceived as a vase. The construction of the new representation of that
shape could be through creating either a standard convex hull or an outermost convex
hull of the initial shape. After constructing the representations shown in Figures 3.17(b)
and 3.17(c) the shape could be perceived as a white central vase, or as a pair of black
faces in profile that are looking towards each other. Generally when we see one of the
perceptions, the other region forms a background and is not seen, so to see both precepts
requires switching back and forth. The contour dividing the black and white regions of
the picture appears to belong to whichever region is perceived as the figure. Figure and
ground is a way of representing the illusory shapes as might be perceived by humans.

Two ways to develop representations under which the figure and ground perception can
be introduced are through the standard convex hull or through the outermost convex
hull of the initial shape. The outermost convex hull can be constructed by joining the
farthest intersections of infinite maximal lines that represent the shape as shown in
Figures 3.18(b) and 3.18(c). The standard convex hull can be constructed simply by
joining the shape edges at the outline contour as shown in Figures 3.19(b) and 3.19(c).

Chapter 3: Multiple Representations 45

Figure 3.17 Figure and ground perception after (Bruce et al., 1996).

S = {[imn, ina, iab, ibc, icd, ide, ief, ifg, igh, ihj, ijk, ikm], [ina, ibc, icd, ide, iae], [ief, ifg, igh, ihj, iej],
[ijk, ikm, imn, ina, ija]}

S = {[x1, x2, x3, x2, x1, x2, x3, x2, x1, x2, x3, x2], [x2, x3, x2, x10, x10], [x2, x3, x2 , x10, x10],
[x2, x3, x2 , x10, x10]}

S = {[S1], [S13], [S13], [S13]}
N27 :: S = {[S1], 3[S13]}

Figure 3.18 Figure and ground representation using the outermost convex hull method

S = {[imn, ina, iab, ibc, icd, ide, ief, ifg, igh, ihj, ijk, ikm], [ina, ibc, icd, ide], [ief, ifg, igh, ihj],
 [ijk, ikm, imn, ina]}
S = {[x1, x2, x3, x2, x1, x2, x3, x2, x1, x2, x3, x2], [x2, x3, x2 , x9], [x2, x3, x2 , x9],

[x2, x3, x2 , x9]}
S = {[S1], [S12], [S12], [S12]}
N29 :: S1 ={[S1], 3[S12]}

Figure 3.19 Figure and ground representation using the standard convex hull method.

The set of representations presented graphically in this Section is illustrated in a
concise syntax as shown in Table 3.1.

(a) (b) (c)

 (a) (b) (c): N28

 (a) (b) (c): N27

Chapter 3: Multiple Representations 46

Table 3.1 Concise syntax of a set of some possible representations from the initial
representation shown in Figure 3.7.

Multiple Representations
No. Label Concise syntax
N1 S1 = {[3((x1, x2), (x3, x2))]}

N2

Unbounded two-sided
subshapes S1 = {[3((x2, x3), (x2, x 1))]}

N3 S1 = {[3((x1, x2, x3), (x2))]}

N4 S1 = {[3((x3, x2, x1), (x2))]}

N5 S1 = {[3((x1), (x2, x3, x2))]}

N6

Unbounded three-sided
subshapes

S1 = {[3((x2, x1, x2), (x3))]}

N7 S1 = {[3(x1, x2, x3, x2)]}

N8 S1 = {[3(x2, x3, x2, x1)]}

N9 S1 = {[3(x3, x2, x1, x2)]}

N10

Unbounded four-sided
subshapes

S1 = {[3(x2, x1, x2, x3)]}

N11 S1 = {[x1, (x2, x3, x2, x1, x2), x3, (x2, x1, x2, x3 , x2)]}

N12 S1 = {[x1, x2), x3, (x2, x1, x2, x3, x2), x1, (x2, x3, x2]}

N13 S1 ={[(x1, x2, x3, x2, x1), (x2, x3 , x2), x1, (x , x3 , x2)]}

N14 S1 = {[x1, x2), (x3, x2, x1, x2, x3), (x2, x1 , x2), x3 , (x2]}

N15

Unbounded five-sided
subshapes

S1 = {[(x1, x2, x3), (x2, x1, x2, x3, x2), (x1, x2, x3), x2]}

N16 S1 = {3[S2], 2[S3]}

N17

Bounded four-sided
subshapes S1 = {3[S2], [S4]}

N18 S1 = {3[S2], 2[S5], 2[S6]}

N19

Bounded four-sided shapes &
three-sided subshapes S1 = {3[S2], 2[S6], 2[S7]}

N20 S1 = {3[S14], 3[S15], [S16]}

N21 S1 = {3[S14], 3[S18], 6[S17], [S16]}

N22 S1 = {3[S14], 3[S18], [S19]}

N23 S1 = {3[S14], [S20]}

N24 S1 = {3[S21], 3[S18], [S16]}

N25 S1 = {[S22], 3[S18]}

N26

Emergent shapes

S1 = {6[S23], [S24]}

N27 S1 = {[S1], 3[S13]}

N28

Figure and ground

S1 = {[S1], 3[S12]}

3.3 The Role of Multiple Representations in Situated
Learning in Designing

Multiple representations aid in structuring the problem space because they introduce
linked states and operators. The multiple representations approach is a constructive
device that is essential in indeterministic and situated processes such as designing. The
main difference between well-structured and the indeterministic nature of ill-structured
problems is described in terms of the problem space and the degree to which operators
are specified. In an ill-structured problem, the route to the goal state must be discovered,

Chapter 3: Multiple Representations 47

while the goal state itself is not entirely clear. The use of multiple representations within
learning environments could have many advantages (Ainsworth et al., 1996). Two
broad classes of claims can be distinguished concerning the advantages of learning with
multiple representations. The first is that they support different ideas and processes.
Multiple representations can be used to place different emphases on aspects of complex
ideas, and may be useful where one representation would be insufficient to carry all the
intended information about the domain. Multiple representations support individual
differences in representational and strategic preference. The second is that they promote
a thorough comprehension of the domain (Ainsworth et al., 1996). On the other hand,
different ways of representing the same information encourage or invite different ways
of reasoning. Multiple representations allow for different interpretations by designers.
They are commonly called perspectives in knowledge representation languages, views
in the database and representations in the design environment. Multiple representations
allow the coexistence of several descriptions of the same entities (Nguyen and Rieu,
1991)

The use of multiple representations in designing allows for the transformations of a
design between design spaces. The interesting and intriguing point of using the multiple
representations is that we never know in advance what information we will get out of a
representation because of the richness of the design environment and the relationships
between the representations and their meanings. From such multiple knowledge
representations, such as spatial knowledge which could be used to represent shape and
space in several ways, a diverse range of interpretations about the shape could be
developed and different relationships among recognised knowledge may be
encountered. A learning system may benefit from the divergences among the multiple
representations as different states of situatedness where design knowledge was
recognised. What makes multiple representations interesting in the context of
situatedness is that they provide the opportunity for different and rich relationships to be
constructed from what looks to be a single object. This allows a learning system to
move through a number of representations (states of situatedness), in which the system
can distinguish the situatedness of knowledge as it is being acquired.

Multiple representations benefit learners to the extent to which they recognise the
regularities of the relationships among design knowledge across the observations
constructed from the representations. In these representations relationships assume a
central role. For example, in architectural plans, the individual components are usually
not as interesting as the relationships among them. Multiple representations through re-
representing designs from different views provide a platform to learn rich relationships
between design knowledge (focus) recognised within these representations and the
states of situatedness of these representations. The relationships to be learned include
where this knowledge (focus) was operating and applicable. The regularities of these
relationships help to construct the situatedness of that knowledge and have the potential
to guide the use of knowledge when similar situations arise. In other words, multiple
representations provide a platform for the learning system to construct the situatedness
of knowledge.

It appears that humans have no difficulty in using different representations for what is
apparently the same object in order to achieve different goals. The emergence of

Chapter 3: Multiple Representations 48

patterns in the re-interpretations of designs helps in making some shape semantics
recognisable. The re-interpretations contribute to making changes in a design
environment and consequently recognising shape semantics that were not explicitly
recognisable in the previous representations. Multiple representations of design through
re-interpretation are proposed to serve as a platform for SLiDe. Multiple representations
provide the opportunity for different shape semantics and relationships among them to
be found from the shape of a single object. This is important if these relationships are to
be used later since it is not known in advance which of the possible relationships that
could be formed are likely to be useful. Hence, multiple representations provide a
platform for different situations to be encountered.

Chapter 4

Situated Learning of Architectural
Shape Semantics

"I am I plus my surroundings and if I do not preserve the latter, I do not preserve myself"
Jose Ortega Y Gasset (Akman, 1999)

This Chapter addresses situated learning of architectural shape semantics. The chapter
commences with the recognition of shape semantics in architectural design compositions
(in the form of floor plans), because the formation and discovery of relationships among
parts of the compositions are fundamental tasks in designing. Three sets of architectural
shape semantics have been selected to be recognised from architectural drawings:
expression, symmetry and modality. Each set includes a group of shape semantics. The
recognition processes of these semantics are introduced. Multiple representations provide a
platform for recognising various shape semantics from each representation. Such a platform
helps to construct a set of observations from the representations. The recognition of shape
semantics in architectural design compositions is useful but what is more useful is to learn
the situatedness of these semantics within which they were recognised. The domain of
shape semantics is used as vehicle to demonstrate the concept of situated learning in
designing, however the underlying conceptual approach is applicable in other domains. The
regularities of the relationships among shape semantics constructed from the observations
of the design environment where shape semantics were recognised are the triggers for
constructing the situatedness of these semantics. The situatedness of a shape semantic
carries with it the applicability conditions of that shape semantic.

4.1 Shape Semantics in Architectural Drawings

Drawing is described as a representational medium or as a communicative tool used
during the design process. More recently, the drawing itself and the way of seeing it
have been explored as indispensable parts of the process of designing and the
underlying design thinking (Liu, 1995; Suwa et al., 1998b). In architectural designing,
as in many other design disciplines, shape composition is an important design activity.
Shapes are the way we begin to understand the visual world that our visual sense brings
to us (Marr, 1982). Through shapes designers express ideas and represent elements of
design, abstract concepts and construct situations. Hence, their role in designing is
significant. The formation and discovery of relationships among parts of a composition
are fundamental tasks in designing (Mitchell and McCullough, 1995; Kolarevic, 1997).
One of the analyses of architectural shapes in a drawing is the result of certain

Chapter 4: Situated Learning about Architectural Shape Semantics 50

relationships among its parts which characterise each and every design. The abstraction
and explicitness of these relationships in a recognised drawing can therefore lead to a
closer and better understanding of shape semantics (Koutamanis and Mitossi, 1993).

Shape semantics have many characteristics, one of which is they encapsulate design
knowledge that can be ascribed to design artefacts and are among design knowledge
that tend to be fundamental to aesthetic design. Shape semantics are the interpretation of
visual patterns or visual forms of groups of shapes in the drawing (Jun, 1997). An
architectural shape semantic is a collection of high-level information defining a set of
characteristics with a semantic meaning based on a particular view of a shape. Various
types of shape semantics can be explained in a variety of ways by grouping structures
using the laws of figure perception (Arnheim, 1977; Meiss, 1991). Grouping structures
is supported by such factors as: repetition, similarity, proximity and orientation. Gestalt
theory deals with the grouping phenomenon in a comprehensive way. The central
concept of the theory is the concept of Gestalt-form or configuration of any segregated
whole or unit (Köhler, 1970).

Shape semantics can be recognised in all architectural drawings. There are two types of
shape semantics of concern in this thesis: primary and emergent. A primary shape
semantic is a visual pattern of relationships among shapes in the initial representation.
An emergent shape semantic is a visual pattern of relationships among shapes that exist
only implicitly in the initial representation but has been made explicit within emergent
shapes (Gero et al., 1995). Shape semantics could be discovered from a whole drawing
or parts of a drawing. These semantics may play a crucial role in developing further
ideas in the same design if designers pursue them further.

4.1.1 Selection of shape semantics
There are various sets of shape semantics that could be recognised in architectural
drawings. In this thesis, only three sets of shape semantics of architectural design have
been selected: expression, symmetry and modality as shown in Figure 4.1. The reason
for this selection is that they are among the most prominent semantics in architectural
shapes. These shape semantics are concerned with the visual relationships among
shapes in a design composition. Expression indicates the impression of a feature or a
defined assemblage of features within the composition such as dominance and
adjacency. Visual dominance reflects the effect of shape size and spatial location in
relation to other shapes where adjacency reflects the contiguity among shapes in the
design composition. Symmetry indicates harmony and conformity among shapes within
the composition such as reflective symmetry, cyclic rotation, translational repetition and
scaling. Modality includes the characteristics of how these parts in the design
composition (shapes), are put together such as centrality, linearity and radiality. Some
examples of shape semantics in architectural design compositions are shown in Figures
4.2 to 4.5.

Chapter 4: Situated Learning about Architectural Shape Semantics 51

Figure 4.1 Three sets of shape semantics are selected to be recognised from architectural design
compositions.

Figure 4.2 Examples of shape semantics representing architectural expressions among shapes
within design compositions (a) adjacency and (b) dominance.

Expression Symmetry Modality

••

 Dominance•

Adjacency •• Reflective Symmetry
 Around one axis
 Around multiple axes

•• Rotation
 Simple
 Cyclic

• Repetition
Translational

•• Centrality

• Radiality

• Linearity

Shape Semantics

• Scaling

(b)

(a)

Chapter 4: Situated Learning about Architectural Shape Semantics 52

Figure 4.3 Examples of shape semantics representing congruence among parts of design
compositions: (a) reflective symmetry around an axis, Erdman Hall Dormitory, Bryn Mawr by
Louis I. Kahn; (b) reflective symmetry around multiple axes, National Assembly Hall in Dacca
by Louis I. Kahn; (c) and (d) closed cyclic rotation, Price Tower, Bartlesville by Frank Lloyd

Wright; (e) scaling, Holy Trinity Ukrainian Church by Radoslav Zuk; (f) translational
repetition, Richards Medical Research Building, Philadelphia by Louis I. Khan; and (g) scaling,

Wolfsburg Cultural Centre by Alvar Aalto.

Figure 4.4 Examples of shape semantics representing the enclosure among shapes: (a) linearity;
(b) radiality, Row house in Jakobstad by Alvar Aalto; and (c) centrality, Trenton Bath House by

Louis I. Khan.

(a) (b)

(c) (d) (e)

(f) (g)

 (a) (b) (c)

Chapter 4: Situated Learning about Architectural Shape Semantics 53

4.1.2 Recognising various shape semantics from multiple
representations

There is a vast range of possible architectural shape semantics which could be emerged.
For instance, different representations as shown in Figure 4.5 allow for some shape
semantics to be readily recognised such as reflective symmetry, cyclic rotations,
dominance, multiple reflective symmetry, simple rotation and centrality as shown in
Figures 4.5(a) to 4.5(f) respectively. Each representation helps in the recognition of
certain shape semantics whereas it could not be readily recognised at other
representations. For instance, dominance cannot be easily recognised in the
representations shown in Figure 4.5 except in the representation shown in Figure 4.5(c)
wherein it can be readily recognised

Figure 4.5 Recognition of different shape semantics from multiple representations of the same
design composition.

4.2 Recognition of Shape Semantics

Shape semantics are recognised in terms of similarity of spatial relationships as well as
physical properties. Shape semantics recognition starts from the identification of shape
congruency. Congruent shapes have the same structure of elements in terms of topology
and geometry. If two shapes have the same number of infinite maximal lines, number of
intersections, geometrical properties of infinite maximal lines and dimensional
constraints of segments on each infinite maximal line, then these two shapes are
congruent (Gero and Jun, 1995a). This is to say that shapes are considered congruent if,
and only if, structural properties of one shape are equivalent to structural properties of
another shape in terms of topology and geometry. An example of two congruent shapes
Sx and Sy is shown in Figure 4.5.

(d) Multiple Reflective Symmetry (e) Simple Rotation

(b) Cyclic Rotation(a) Reflective Symmetry (c) Dominance

(f) Centrality

Chapter 4: Situated Learning about Architectural Shape Semantics 54

Figure 4.6 An example of two congruent shapes Sx and Sy where there are three vertices in each
shape (iab, ibc and ica) and (imn, ino and iom); the lengths of corresponding edges are equal, la = lm,

lb = ln and lc = lo; the angles at corresponding vertices are equal; A(la, lb) = A(lm, ln), A(lb, lc) =
A(ln, lo) and A(lc, la) = A(lo, lm); and the ratios of each two consecutive edges are equal, la | lb = lm

| ln , lb | lc = ln | lo and lc | la = lo | lm.

4.2.1 Recognition of shape semantics indicating symmetry

4.2.1.1 Reflective symmetry around an axis

For reflective symmetry around an axis (Mr) to exist, the slopes of line segments joining
corresponding vertices of the two congruent shapes must be equal, ie such line segments
must be parallel. The line joining the midpoints of the slopes (bisector) must be straight
and perpendicular to them (March and Steadman, 1971; Baglivo and Graver, 1983).
This line is the axis of reflection. An example of reflective symmetry around an axis is
shown in Figure 4.7.

Figure 4.7 An example of reflective symmetry (Mr) between two congruent shapes Sx and Sy

around an axis lz where l1 // l2 // l3 and their slope is zero, lz joining midpoints of l1, l2 and l3 is a
straight line, and lz ⊥ l1, lz ⊥ l2 and lz ⊥ l3.

4.2.1.2 Reflective symmetry around multiple axes

Reflective symmetry around multiple axes (Mt) exists where at least four congruent
shapes are available in a design composition. Each congruent shape has to be at least
reflected around more than one axis. The two axes of reflection must be perpendicular
on each other. An example of reflective symmetry around multiple axes is shown in
Figure 4.8.

iab

bci

cai

noi

mni

omi

lb

lc

la

ln
lm

lo

SxSy

iab

bci

cai

noi

mni

omi

lb

lc

la

ln

lm

lo

SxSy

l1

l2

l3

lz

Chapter 4: Situated Learning about Architectural Shape Semantics 55

Figure 4.8 An example of multiple reflective symmetry (Mt) around two axes lz and lw where
each of the congruent shapes Sx, Sy, Sv and Su is reflected around both of them and lz ⊥ lw.

4.2.1.3 Simple rotation

For simple rotation (Rs) to exist, the perpendicular bisectors on the line segments
joining the corresponding vertices of two congruent shapes must intersect at the same
point (concurrent), (March and Steadman, 1971; Baglivo and Graver, 1983) as shown in
Figure 4.9. The concurrent point is their rotational centre.

Figure 4.9 An example of simple rotation (Rs) between two congruent shapes Sx and Sy around
a rotation centre point irc.

4.2.1.4 Cyclic rotation

Cyclic rotation (Rn) exists when at least three congruent shapes are available in a design
composition around one rotational centre where the rotation angles between each two
consecutive shapes are equal and have to be not more than 120o. An example of cyclic
rotation among four congruent shapes is shown in Figure 4.10.

iab

bci

cai

noi

mni

omilb
lc

la ln

lm

lo

Sx

Sy

l1

l2

l3

lz3

lz1

lz2

Rotation centreirc

90.00° Rotation angle

abi

ica

al yS

lc

bl

ibc

12l

ld

fdi

10
de

11l i
l

vS

el

fl
efi

1l imn
w

3

lz

l

2l i

l

no
xS

ol

n

iom

ml

l
4

7l

l

8l
pqi

q

uS

6l

5l qri
rl

9l

pl

l

rpi

Chapter 4: Situated Learning about Architectural Shape Semantics 56

Figure 4.10 An example of cyclic rotation (Rn) between four congruent shapes Sx, Sy, Sv and Su

around the same rotational centre point irc with the same rotational angle 90o.

4.2.1.5 Translational repetition

Translational repetition (Pr) exists where at least three congruent shapes are available in
the design composition where the line segments joining the corresponding vertices of
each of two consecutive congruent shapes form part of a parallelogram. The other two
sides of the parallelogram must be the corresponding sides of each of two congruent
shapes (Baglivo and Graver, 1983). The distances from the centre of each of two
consecutive congruent shape (translational distance), must be equal. Figure 4.11 shows
an example of translational repetition among three congruent shapes.

Figure 4.11 An example of translational repetition (Pr) between three congruent shapes Sx, Sy

and Sv around translational line lz with the same translational distance X1.

iab

bci

cai

noi

mni

omilb

lc

la
ln

lm

lo

Sx

Sy

l1

l2

l3

lz3

lz1

lz2

Rotation centre

irc

Rotation angle
90°

90°

90°

90°

Sv

Su

ide

efi

ifd

ld

le

lf
pqi

iqr

irp

lq

rl

pl

noi

mni

omi

ln

lm

lo

Sx

fl
ief

l

ifd
vS

d

ide

el

c

ica
lS

l

y
b

al

abi

bci X1

1X

lz

Chapter 4: Situated Learning about Architectural Shape Semantics 57

4.2.1.6 Scaling

Comparing all synchronised line segments of two shapes where their ratios are all equal
identifies scaling (Es) among shapes in the design composition. An example of scaling
is shown in Figure 4.12.

 Figure 4.12 An example of scaling (Es) between two shapes Sy and Sv

where la / ld = lb / le = lc / lf.

4.2.2 Recognition of shape semantics indicating expression

4.2.2.1 Adjacency

Adjacency (Ad) is a boundary relationship among shapes in a design composition. In
this thesis, neither shape overlap nor partial sharing is permitted during the recognition
of shapes. Hence, adjacency exists when two shapes are contiguous. Two shapes are
contiguous when they are discrete, ie their product is empty (Chase, 1997). Two shapes
are adjacent if they share at least one edge of their boundaries. Examples of different
kinds of adjacency are shown in Figure 4.13.

 Figure 4.13 Examples of different kinds of adjacency (Ad) among shapes.

4.2.2.2 Dominance

Visual dominance (Dm) exists in a design composition if there is a pre-eminent shape in
size that has an area at least one third of the total area in a design composition. Such a
shape could be of contiguous or non-contiguous relationship to other shapes in the
composition but the centre of the design composition must occur within the boundary of
the dominant shape as shown in Figure 4.14.

fl ief

l

ifd
vS

d

de

el

c

ica

lS

l

y b

al

abi

bci

l1

Sn

Sm

So

tS

SqSt

l2

l3
l6

l5

l4

(a) (b) (c)

Chapter 4: Situated Learning about Architectural Shape Semantics 58

Figure 4.14 Examples of dominance (Dm) among contiguous and non-contiguous shapes in (a)
and (b) respectively.

4.2.3 Recognition of shape semantics indicating modality

4.2.3.1 Centrality

Centrality (Ce) exists in a design composition if there is a shape within the design
composition in which the centre of the whole design composition occurs within its
boundary. This centre must be of equal distances to centres of the congruent shapes in
the design composition. Some examples of centrality in design compositions are shown
in Figure 4.15.

Figure 4.15 Examples of centrality (Dm) of a shape in some design compositions.

4.2.3.2 Radiality

Radiality (Tr) in a design composition exists where at least three shapes are rotated
around a central point with different rotational angles. Cyclic rotation is a special case
of radiality where any rotation angles between any two consecutive shapes have to be
equal and not more than 120o as shown in Figure 4.10. Examples of radiality among
shapes are shown in Figure 4.16.

 (a) (b)

(a) (b)

Chapter 4: Situated Learning about Architectural Shape Semantics 59

Figure 4.16 Examples of radiality (Tr) among congruent shapes.

4.2.3.3 Linearity

Linearity (Ls) exists in a design composition where at least three congruent shapes are
repeated along a linear axis and the distances among the centres of consecutive
congruent shapes are not equal. Translational repetition is a special case of linearity
where the translational distances between each two consecutive congruent shapes are
equal. Linearity exists as well among scaled congruent shapes as shown in Figure 4.17.

Figure 4.17 Examples of linearity (Ls) among (a) scaled congruent shapes or (b) congruent
shapes.

fl ief

l

ifd

vS
d

ide

el

c

ica

lS

l

y
b

al

abi

bci

Sh
igi

li

ghi
gl l

ihi

h

X1 X2

X3 X4 X5 X6

(a)

(b)

60°
90°

45° 60°

105°
Radiation centre

110°

140°

110°
Radiation centreRadiation centre

45°

60°

45°

Chapter 4: Situated Learning about Architectural Shape Semantics 60

4.3 Constructing Observations from Multiple Representations

Shape semantics can be recognised within each of the representations. The group of
shape semantics recognised in each representation is considered as an observation
constructed from that representation. Since various shape semantics are recognised from
different representations, multiple representations (Ni) help in constructing a set of
observations (Oj) of a design composition. This set of observations is used to search for
regularities of relationships among shape semantics within which these shape semantics
were recognised. The set of observations shown in Table 4.1 is constructed from the
representations shown in Section 3.2.2. The notations of shape semantics within the
observations in Table 4.1 are as follows:

Ad Adjacency
Ce Centrality
Dm Dominance
Mr Reflective symmetry around one axis
Mt Reflective symmetry around multiple axes
Rs Simple rotation
Rn Cyclic rotation

4.4 Situated Learning of Shape Semantics

The processes of locating shape semantics in relation to their situations within which
they were recognised are as follows:

(i) select a single shape semantic and consider it as the knowledge in focus;
(ii) find all the observations within which this single shape semantic has been

recognised;
(iii) find other shape semantics in these observations;
(iv) find the regularities of relationships among other shape semantics that are in

conjunction with the knowledge in focus across the observation; such
regularities carry the applicability conditions of where the knowledge in
focus was recognised;

(v) construct the situatedness of the knowledge in focus based upon these
regularities

4.4.1 Constructing the situatedness of shape semantics
Assuming that a shape semantic is labelled ki when it is selected to be the knowledge in
focus, it will be referred to as Fj and its learned situation as tn. When applying the above
procedures to the set of observations shown in Table 4.1, the following can be found. If
k1 refers to centrality (Ce) is chosen to be the knowledge in focus F1, it is found that it
has been recognised in different observations: O17, O20, O21, O22, O23, O24 and O27.
Across these observations, two kinds of regularities were found as shown in Figure
4.18. These regularities are the mapping of one to many, one focus to many situations.
The first regularity is found in the observations O17, O22, O23 and O27.

Chapter 4: Situated Learning about Architectural Shape Semantics 61

Table 4.1 A set of observations constructed from the multiple representations
developed from a design compositions as shown in Section 3.2.2.

 Rep.
 No.

Obs.
No.

Observation Rep.
 No.

Obs.
No.

Observation

N1 O1 Rn (x1, x2)
 Rn (x3, x2)

N2 O2 Rn (x2, x3)
Rn (x2, x1)

N3 O3 Rn (x1, x2 , x3) N4 O4 Rn (x3, x2 , x1)

N5 O5 Rn (x2, x3, x2)
Mr (x2, x3, x2)

N6 O6 Rn (x2, x1, x2)
Mr (x2, x1, x2)

N7 O7 Rn (x1, x2, x3, x2) N8 O8 Rn (x2, x3, x2, x1)

N9 O9 Rn (x3, x2, x1, x2) N10 O10 Rn (x2, x1, x2, x3)

N11 O11 Mr (x2, x3, x2, x1, x2) N12 O12 Mr (x2, x1, x2, x3, x2)

N13 O13 Mr (x2, x3, x2) N14 O14 Mr (x2, x1, x2)

N15 O15 Rs (x1, x2, x3) N16 O16 Mr [S2], Mr [S3],
Rn [S2], Ad [S3] | 2 [S2],
Ad [S3] | [S3]

N17 O17 Mr [S2],
Rn [S2], Ad [S4] | 3 [S2],
Ce [S4],
Dm [S4]

N18 O18 Mr [S2], Mr [S6],
Rn [S2], Ad [S2] | [S6],
Ad [S5] | [S6]

N19 O19 Mr [S2], Mr [S6],
Mr [S7],
Rn [S2],
Ad [S2] | [S6], Ad [S2] | [S7],
Ad [S6] | [S7]

N20 O20 Mr [S14], Mr [S15],
Rn [S14],
Ad [S16] | 3 [S15], Ad [S15] | 2
[S14],
Ce [S16]

N21 O21 Mr [S14], Mr [S17], Mr [S18],
Rn [S14], Rn [S17], Rn [S18],
Ad [S16] | 6 [S17], Ad [S14] |
2 [S17], Ad [S18] | 2 [S17]
Ce [S16],

N22 O22 Mr [S14], Mr [S18],
Rn [S14], Rn [S18],
Ad [S19] | 3 [S14] | 3 [S18],
Ce [S19],
Dm [S19]

N23 O23 Mr [S14],
Rn [S14],
Ad [S20] | 3 [S14],
Ce [S20]
Dm [S20]

N24 O24 Mr [S18], Mr [S21]
Rn [S18], Rn [S21]
Ad [S16] | 3 [S21], Ad [S18] | 2
[S21],
Ce [S16]

N25 O25 Mr [S18],
Rn [S18],
Ad [S22] | 3 [S18],
Dm [S22],

N26 O26 Mr [S23],
Rn [S23],
Ad [S24] | 6 [S23],
Dm [S24]

N27 O27 Mr [S13],
Rn [S1],
Ad [S1] | 3 [S13],
Ce [S1],
Dm [S1]

N28 O28 Mr [S12],
Rn [S12],
Ad [S1] | 3 [S12],
Dm [S1]

Chapter 4: Situated Learning about Architectural Shape Semantics 62

The second regularity is found in the observations O20, O21 and O24 . Across the
observations O17, O22, O23 and O27 , when F1 is selected the knowledge in focus, there is
regularity of other shape semantics k2, k3, k4 and k5 that refer to reflective symmetry
around an axis (Mr), cyclic rotation (Rn), adjacency (Ad) and dominance (Dm)
respectively. This regularity defines the relationships under which F1 is recognised and
constructs the situation t1 for the knowledge in focus F1. This means that F1 is situated
within the shape semantics k2, k3, k4 and k5. In Figure 4.18, the unshaded curved arrow
refers to the knowledge in focus and the shaded curved arrow refers to the situation of
that focus. Table 4.2 illustrates this relationship between the selected knowledge in
focus F1 and its situation t1.

Figure 4.18 A learned regularity across the observations O17, O22, O23 and O27. If k1, centrality
(Ce) is chosen to be the knowledge in focus, then k2, k3, k4 and k5 form its situation t1.

Table 4.2 An example of centrality (Ce) as knowledge in focus and its situation across
the set of observations.

Oi Focus (F1) Situation (t1)
O17

O22

O23

O27

k1, centrality (Ce)

k2, reflective symmetry around an axis (Mr)
k3 cyclic Rotation of (Rn)
k4 adjacency (Ad)
k5 dominance (Dm)

4.4.2 Duality between knowledge in focus and the situation
Alternatively taking another shape semantic k5, which refers to dominance (Dm), to be
the knowledge in focus F5 within the same regularity, it is found that k1, k2, k3 and k4

construct the situation t5 of F5 within which it was recognised as shown in Table 4.3 and
Figure 4.19. In Figure 4.19, the inverted arrow refers to the duality between focus parts
within the regularity. This could be explained as a duality between knowledge in focus
and its situation within the same regularity. It means that, for certain knowledge in
focus F1 recognised in relation to the situation t1 wherein k5 is part of that situation, it is

O23

O17

O27

k1
k2

k4k3

Focus

O22

Situation
F1

t1

O21

O24
O20

k5

Chapter 4: Situated Learning about Architectural Shape Semantics 63

possible that when k5 is chosen to be the knowledge in focus F5 its situation t5 includes
k1 as one of its parts.

Table 4.3 An example of the duality between knowledge in focus and parts of its
situation within the same regularity.

Oi Focus (F5) Situation (t5)
O17

O22

O23

O27

k5 dominance (Dm)
k1, centrality (Ce)
k2, reflective symmetry around an axis (Mr)
k3 cyclic Rotation of (Rn)
k4 adjacency (Ad)

Figure 4.19 An example of the duality between knowledge in focus and parts of its situation
within the same regularity.

In the second regularity learned across the observations O20, O21 and O24, if k1 that
refers to centrality (Ce) is chosen to be the knowledge in focus F1, it is found that the
other shape semantics k2, k3 and k4 construct another possible situation t101 within which
centrality (Ce) is recognised. It can be noticed that k5 was in conjunction with F1 at the
first regularity but such a relationship does not appear to be seen within the second
regularity. Applying the notion of duality within this regularity when k5 which refers to
dominance (Dm) is selected to be the knowledge in focus F5, then its situation will be t5

which is constructed from k2, k3 and k4 as shown in Figure 4.20.

Applying the notion of duality can help with constructing the situatedness of other
recognised shape semantics within the learned regularities. For instance, Figure 4.21
shows two of the possible situations t2 and t201 of k2 which refers to reflective symmetry
(Mr) around one axis when it is considered to be the knowledge in focus F2.

O23

O17

O27

k1
k2

k3k4

Focus

Duality

O22

k4

k2
k3

k5

Focus

Situation

Situation

F1

t1

F5

t5

O21

O24
O20

k5

k1

Chapter 4: Situated Learning about Architectural Shape Semantics 64

Figure 4.20 Another possible situation of k1, which refers to centrality (Ce) constructed from
the second regularity when it is considered as the knowledge in focus F1. The duality between
knowledge in focus F4 and its situation within this regularity is shown. In this Figure, Figure

4.19 is illustrated in a dropped tone.

Figure 4.21 An example of applying the duality to construct two of the possible situations, t2

and t201, of reflective symmetry (Mr) around one axis within the two learned regularities.

O23

O17

O27

k1
k2

k4k3

Focus

Duality

O22

k4

k2
k3

k5

Focus

Situation

Situation

F1

t1

F5

t5

k1

k3

k2

Focus
Situation

k4

F4
t4

k2

k3k4

Focus

Situation

k1

F1

t101

O21

O24
O20

k5

k1

Duality

O23

O17

O27

k1
k2

k3k4

Focus

Duality

O22

k5

k3

k4

k2

Focus

Situation

Situation

F1

t1

F2

t2

k4 k3

FocusSituation

k2

F2t201

k4
k3

k2

Focus

Situation

k1

F1

t101

O21

O24
O20

k5

k1

Duality

k1

Chapter 4: Situated Learning about Architectural Shape Semantics 65

4.4.3 Learning multiple situations for a certain knowledge in focus

Similarly, duality can be applied to learn the situations of other shape semantics
recognised within those two learned regularities. However, in order to learn other
possible situations in relation to certain knowledge in focus, the set of observations
shown in Table 4.1 can be searched for other regularities within which that knowledge
in focus is found. For instance, the set of observations shown in Table 4.1 can be
searched for regularities within which k3 (refers to cyclic rotation (Rn)) is recognised to
be the knowledge in focus F3. Four regularities are found within which there are four
possible situations, t3, t301, t302 and t3o3, within which F3 is operating as shown in Figure
4.22. The same process could be used to locate every other shape semantic in relation to
situations within which it was recognised across the set of observations constructed
from the developed representations. This shows the importance of the regularities of
relationships among shape semantics to construct their situations within which they
were recognised. The situatedness of design knowledge implies its applicability
conditions may serve as a basis for guiding its use when similar situations arise.

Figure 4.22 Four regularities are found across the set of observations shown in Table 4.1 within
which the situations t3, t301, t302 and t3o3 are constructed in relation to k3 which refers to cyclic

rotation (Rn) when considered as the knowledge in focus.

O23

O17

k3 k2

k4k1

Focus

O22

k4

k2

k3

Focus

Situation

Situation

F3

t302

F3

t303

k4

k1k2

Focus
Situation

k3

F3
t301

k4

k2k5

Focus

Situation

k3

F3

t3
O21

O24

O20

k5O27

O25 O26
O28 O16

O18

Chapter 4: Situated Learning about Architectural Shape Semantics 66

4.4.4 Preconditions vs. Situatedness of Shape Semantics

Each shape semantic has preconditions without which it cannot be recognised. For
instance, the preconditions of centrality (Ce) to be recognised in a design composition
are: the centre of the whole design composition must occur within the boundary of a
shape within the design composition; and this centre must be of equal distances to
centres of the congruent shapes in the design composition as shown by example in
Section 4.2.3.1. These preconditions are necessary and sufficient conditions for
centrality (Ce) to be recognised. At the same time, the preconditions indicate nothing
about the situation within which centrality (Ce) could be recognised. Centrality (Ce)
operates within unique situations in the design environment. The situatedness of
centrality (Ce) determines its applicability conditions within the design environment.
The primary difference between the preconditions and the situatedness is that the latter
cannot be completely predetermined but has to be constructed. For instance, the
situatedness of centrality (Ce) is constructed based on the regularities of relationships
between centrality (Ce) and other shape semantics in the design environment within
which centrality (Ce) was recognised. The regularities of relationships learned from a
set of observations of a design composition and shown in Figure 4.18 and Table 4.2
indicated that centrality (Ce) is situated within reflective symmetry around an axis (Mr),
cyclic rotation (Rn), adjacency (Ad) and dominance (Dm). In other words, the difference
between preconditions and situatedness of design knowledge (shape semantics) is that
the former is fixed and the latter is changing based on what is constructed from the
design environment.

Chapter 5

A Computational System for Situated
Learning in Designing (SLiDe)

This Chapter presents a computational system for situated learning in designing (SLiDe).
SLiDe is implemented to operate within the domain of architectural shape semantics. Its
underlying concepts could be used in other domains. The Chapter commences by
introducing the framework of SLiDe. SLiDe consists of three primary modules: Generator,
Recogniser and Incremental Situator. The Generator is used by the designer to develop a
set of multiple representations of a design composition. This set of representations form
the initial design environment of SLiDe. The Recogniser detects shape semantics within
the representations and produces a set of observations, each of which consists of a group of
shape semantics recognised at each representation. The Incremental Situator consists of
two sub-modules: Situator and Restructuring Situator. The Situator module locates shape
semantics in relation to the situations within which they were recognised by finding the
regularities of relationships among them across the observations and clustering them into
situational categories organised in a hierarchical tree structure. Such relationships change
over time due to the fluid nature of designing that causes changes in the design
environment due to the development of further representations of other ways of viewing
the same design composition. The Restructuring Situator updates the previously learned
situational categories and restructures the hierarchical tree accordingly. An illustration of
how the Incremental Situator works is presented.

5.1 Framework for Situated Learning in Designing

The role of the computational system for Situated Learning in Design (SLiDe) is to
locate design knowledge, in the form of shape semantics, in relation to their situations
within which they were recognised within the design environment, ie. learning the
applicability conditions of design knowledge. This is achieved by learning the
regularities, in the form of situational categories, of relevant relationships among the
shape semantics across different observations constructed from the set of multiple
representations. Developing multiple representations from a single design composition
was introduced in Chapter 2, and methods of shape semantic recognition and
constructing situational categories from the set of observations were discussed in
Chapter 4. SLiDe is an integrated system for generating multiple representations, shape
semantics recognition, constructing observations and clustering situational categories of

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 68

shape semantics over time within which they were recognised. SLiDe takes a design
composition in the form of line segments as its input. It generates, with the interaction of
the designer, a set of multiple representations of that design composition which serves as
its initial design environment and constructs a set of observations through the process of
shape semantics recognition from each representation. SLiDe produces, in a hierarchical
structure, a set of situational categories within which shape semantics were recognised in
the design environment. The designer may choose to pursue developing further
representations that could be generated using SLiDe once again in addition to the
previous representations. This causes a change in the design environment of SLiDe by
adding new representations. Consequently, SLiDe updates its own observations from the
design environment considering such changes. SLiDe restructures its previously learned
situational categories without being affected by the order of observations and
dynamically produces a new hierarchical structure of situational categories in response to
the changes that took place in its design environment. This indicates that SLiDe modifies
its behaviour in response to the changes that have taken place in its design environment,
ie SLiDe situates its learned knowledge in relation to the design environment.

SLiDe's framework consists of three modules: Generator, Recogniser and Incremental
Situator that includes Situator and Restructuring Situator as shown in Figure 5.1. The
Generator module assists the designer in generating multiple representations of a single
design composition, here in the form of a floor plan. These representations serve as a
platform and form the design environment for the Recogniser module to interact with
and construct its own set of observations from the design environment for the Situator
module to learn from. The Recogniser module detects each representation and attributes
shape semantics to it. The result of using the Recogniser module is a set of observations,
each of which comprises a group of shape semantics associated with each corresponding
representation. The regularities of relationships among shape semantics at different
observations, are the triggers for the Situator module to construct situational categories
for these shape semantics in a hierarchical tree structure. The situational categories are
clustered based on the regularities of relationships among shape semantics within which
they were recognised across the observations. The reason for calling them situational
categories rather than normal categories or clusters as is the case in machine learning is
that knowledge is generalised with respect to the situation within which it was
recognised. Generating a set of new representations of the same design decomposition
triggers the Recogniser module to update its own set of observations from the design
environment which consequently triggers the Restructuring Situator module to update its
previously learned situational category and its hierarchical tree structure. Updating what
has been learned can be in the form of adding new knowledge that is relevant to a
learned situation that was not previously available or in the form of new constructed
situations. The results of SLiDe are sets of situational categories that situate the shape
semantics.

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 69

Figure 5.1 The overall framework of the computational system for situated learning in designing
(SLiDe).

Input
Line segment representation of

a design composition

Generator
Generate set of representations

(Multiple Representations)
form the initial input

N N1 m

Designer’s Inputs
Select the frame
Select the shape

Recogniser

Recognise shape semantics that are available
at each representation

()ki

Situator

Multiple
Representations

Recognition

Learn the situational categories
for

 recognised shape semantics

()Cs

Situatedness

Update the learned situational
categories and restructure the

hierarchy

()Cs+t

What triggers learning?

When is learning triggered?

Occurrence of a set of
regularities of shape semantic
relationships in different
observations

When the occurrence of a set
of regularities is saved

What triggers learning?

When is learning
triggered?

A set of new observations
experienced by the system
from a new
representations

When the occurrence of
relationships is saved from
the new observations

set of

In
c r

em
en

ta
l l

ea
rn

in
g

m
ec

ha
ni

sm

Restructuring Situator

Set of observations for corresponding
Representations

.................. O O1 n

Design
Environment

Further Inputs
Select another shape

Or select another frame and
then a shape

SLiDe

Designer’s Interaction

In
cr

em
en

ta
l S

it
ua

to
r

Knowledge transformers:
Decomposition
Grouping

The was
implemented in

 in
 in and

written in the language
as an (AutoCAD
Development System)

Generator

AutoCAD Open
Windows Unix

C
ADS

The was
implemented in

and written in the
language and used the

 files
produced by the Generator

as its input

Recogniser

Windows 95 on PC
C++

AutoCAD DXF

The
 was

implemented in a
environment and written
in the language and

operates in

Incremental
Situator

Unix

C
 Open

Windows Interface

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 70

5.2 Multiple Representations using the Generator Module

The Generator module handles the generation of different representations from what
appears as a single object. The process model of the Generator module is shown in
Figure 5.2. The Generator module commences with an initial representation of a design
composition, in the form of line segments, as its data input. It re-represents these line
segments in the form of their infinite maximal lines within the frame selected by the
designer. This is achieved by extending the line segments representing the shape to the
boundary of that frame. The Generator requests the designer to select a shape of interest
from among the intersections of the infinite maximal lines. The boundary of the selected
frame defines the design space to be searched by the Generator module. The Generator
searches the design space for a congruent shape of the selected shape and generates a
representation from the combination of congruent shapes and the boundary of the initial
representation. If there are no congruent shapes in the design space the representation is
generated from the combination of the selected shape and the boundary of the initial
representation. The Generator does not allow for overlapping shapes while searching for
congruent shapes. This representation generation process is repeated with different
selections to develop a set of multiple representations. The process is terminated when
the designer is not interested in further selections at that moment of time.

Figure 5.2 The Process model of the Generator module to develop multiple representations.

The size and location of the frame around the design composition affects the set of
representations that can be generated since they affect the number of intersections of
infinite maximal lines that can be generated. The designer may choose later to pursue
developing other representations of the same design composition either by selecting
other frames or other selections of shapes within the intersections of infinite maximal
lines. The interaction between the designer and the Generator module provides a medium
of communication between the designer and the system that affects the output of

Primary Shape

R
ep

re
se

n
ta

ti
on

s
G

en
er

at
io

n
P

ro
ce

ss
 (

R
G

P
) Explicit shapes

Re-representation
Emergent

Shapes

Designer
selects the
shape of
interest

RGP terminates when the designer is
not interested in selecting any more
shapes

Infinite maximal lines
representation

within the selected frame
by the designer

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 71

developed representations based upon designer's interest and at the same time limits the
search space. The selection of shapes among the intersections could be fully automated
and computed randomly but there is no direct basis to select one shape rather than the
other.

A commercially available CAD system has been adopted around which to develop the
Generator module. For this purpose AutoCAD as an industry CAD system was selected.
The Generator module has been implemented in AutoCAD in Open-Windows in a Unix
environment and it is written in the C language and as an ADS (AutoCAD Development
System) application. The Generator module include five sub-modules, some of which are
based in part on SESS (Jun, 1997) and SPARS (Cha, 1998) and performed as follows:

draw a frame around the design composition
{

get the initial vertices;
draw a frame around the design composition;
correct the frame if it is not convenient;
get the entities within the frame;

}
infinite maximal lines representation

{
get the entities that are straight lines within the frame;
extend these lines to the frame;
get the intersections of these lines;
ignore the intersections of these lines with the boundary of the frame;

}
selection of a bounded shape (polyline)

{
get the intersections (vertices) of the shape selected by the designer;
get the distances (lengths) between each two consecutive vertices (edges);
get the number of edges;
get the angles at vertices (between each two consecutive edges);

}
shape congruency identification

{
find the corresponding first intersection (vertex) of the presumed
congruent shape among all intersections in the frame

{
choose two consecutive line segments l1 and l2 at an intersection to be

the first intersection of the selected shape;
get the distances d1 and d2 at an intersection i1 within the frame that is

equal to l1 or l2;
get the angle at the vertex i1 between d1 and d2;
compare the angles on vertices between d1 and d2 and l1 and l2 (must be

equal to continue);
get the i1 to be the first intersection and the other endpoint of d1 to be the

second intersection;
get d1 to be the corresponding line segment to l1 and d2 to l2;

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 72

}
find all corresponding line segments in the presumed congruent shape

{
start from the second intersection to the last intersection of the selected

shape;
compare the lengths of corresponding edges (must be equal);
compare the angle at corresponding vertices (must be equal);

}
}

generate a representation of a design composition
{

if (there are congruent shapes)
then (get all the congruent shapes and the initial vertices)
else (get the selected shape and the initial vertices)

}

These processes are repeated when the designer selects another shape or changes the
frame around the design composition. The results of using the Generator module are
multiple representations in the form of bounded shapes between the initial boundary and
either the recognised congruent shapes or the selected shape produced in DXF files.

5.2 Shape Semantics Recognition using the Recogniser
Module

The Recogniser module uses a computable structural shape pattern representation that
focuses on shape relationships as well as physical properties. The Recogniser module
provides the capability to recognise shape semantics from the multiple representations
produced using the Generator module. The Recogniser module detects the shape
semantics at each representation and produces an observation for each corresponding
representation. The graphical representations of shape semantics recognition are
illustrated in Section 4.2.1. The Recogniser detects each representation according to
predefined conditions of shape semantics. A shape semantic is found by the Recogniser
when all of its preconditions are satisfied. The recognition of shape semantics is
performed as follows:

compare properties of all shapes within each representation:
shape congruency identification

{
compare the number of vertices;
compare the length of corresponding edges;
compare the angle at corresponding vertices;
compare the ratio of each two consecutive edges;

}
congruent shapes relationships identification

{

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 73

draw line segments connecting the corresponding vertices between each two
congruent shapes (Gc);

get the slope of each Gc;
generate the midpoint of each Gc;
draw a line segment perpendicular on each Gc from its midpoints Gp;
get the slope of each Gp;
draw a line connecting the midpoints of all Gc Gm;

}
identification of reflective symmetry (Mr) around an axis Gm

{
two shapes must be congruent;
the slopes of all Gc must be equal;
the slopes of all Gp must be equal;
the slope of the Gm must be equal to all Gp;
Gm must occupy the same position as all Gp;

}
identification of reflective symmetry (Mt) around multiple axes

{
at least four shapes must be congruent;
each shape must be reflected around more than one axis;
reflection axes must be perpendicular;

}
identification of simple rotation (Rs)

{
two shapes must be congruent;
the slopes of all Gc are not equal;
the slopes of all Gp are not equal;
the slope of the Gm is not equal to all Gp;
all Gp intersect in a single point (rotation centre);

}
identification of cyclic rotation (Rn)

{
at least three shapes must be congruent;
find a simple rotation between each of two consecutive congruent shapes;
get the rotation angle between each of two consecutive congruent shapes;
congruent shapes are rotated around a single point (rotation centre);
all rotational angles must be equal and none of which should be more than
120o;

}
identification of translational repetition (Pr)

{
at least three shapes must be congruent;
the slopes of all Gc must be equal;
get the centre of each congruent shape;
get the distance between the centres of each of two consecutive congruent
shapes (translational distance);
all the translational distances must be equal;

}

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 74

identification of scaling (Es)
{

the number of vertices of the two shapes must be equal;
the angles at corresponding vertices must be equal;
the ratio of the length between corresponding edges must be equal (scale
ratio);

}
identification of adjacency (Ad)

{
get line segments in each polyline shape in the representation with their
coordinates;
find line segments that are used more than once;
adjacent shapes must at least share one line segment on their boundaries;

}
identification of dominance (Dm)

{
get the areas for each polyline shape in the representation;
get the total area of the shapes in the design composition;
get the centre of the design composition;
the dominant shape is the largest shape in area within the design composition
but at least has to be 1/3 of the total area;
the centre of the design composition must occur within the boundary of the
dominant shape;

}
identification of centrality (Ce)

{
get the centre of the design composition;
get the congruent shapes in the design composition;
the centre of the design composition must occur within the boundary of the
central shape;
the distances from the centres of the congruent shapes to the centre of the
central shape must be equal;

}
identification of radiality (Tr)

{
at least three shapes must be congruent;
find a simple rotation between each of two consecutive congruent shapes;
get the rotation angle between each of two consecutive congruent shapes;
congruent shapes must be rotated around a single point (rotation centre);
rotational angles are not equal;

}
identification of linearity (Ls)

{
at least three shapes must be congruent or scaled shapes;
the slopes of all Gc must be equal;
get the centre of each congruent shape;
get the distance between the centres of each of two consecutive congruent
shapes (translational distance);

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 75

translational distances are not equal;
}

All of the above preconditions that are necessary and sufficient for recognising shape
semantics are tested against each representation. The group of shape semantics found by
the Recogniser is considered as a single observation from the corresponding
representation. A set of observations is constructed from the corresponding set of
multiple representations developed using the Generator module. The Recogniser module
is triggered to recognise shape semantics whenever the Generator module generates a
representation. The Recogniser module is developed in Windows 95 environment on a
PC. It is written in the C++ language and used AutoCAD DXF files generated by the
Generator module as its input. Some of its sub-modules were adapted from SPARS
(Cha, 1998). The result of using the Recogniser is a set of observations where shape
semantics were recognised within the design environment of SLiDe.

5.4 Locating Shape Semantics in relation to their Situations
using the Incremental Situator Module

The Situator module locates the recognised shape semantics in relation to their situations
by finding the regularities of relationships among them across the observations. These
regularities are clustered in terms of situational categories that reflect the relationships
and dependencies among shape semantics based upon where they were recognised.
Within the situated view of designing, relationships and dependencies change over time
whenever changes take place in the environment and concept drift occurs. Concept drift
implies that the clustering changes during the period of learning. The conditional
probabilities reflected by the new observations change also and are no longer accurately
represented by the categories in context-free machine learning systems. The
Restructuring Situator updates the previously learned situational categories and
restructures the hierarchical tree structure accordingly. So the tasks to be handled by
both the Situator and Restructuring Situator modules are defined as follows:

Initial input:

Given: • A set of observations constructed from multiple representations where each
observation is comprised of a group of shape semantics recognised from a
single representation.

Find: • The regularities of relationships among shape semantics and cluster them into
situational categories based upon where they were recognised across the
observations;

• The summary description of each category that describes its observations;
and

• The hierarchical tree structure for those situational categories.

Further Inputs:

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 76

Given: • A new set of observations produced from other representations where each
observation is comprised of a group of shape semantics recognised from a
single representation.

Find: • The new regularities from the new observations and their effects on the
previously learned situational categories and either accommodate them within
the learned categories and update their probabilities or create new situational
categories;

• The summary description of each category that describes its observations;
and

• The update in the hierarchical tree structure of situational categories
considering the new changes in the design environment.

To handle this task an incremental clustering mechanism that uses a nominal description
of knowledge is needed. The roles of this incremental clustering mechanism are to
categorise shape semantics within which they were recognised across the observations;
provide a description for each category; and organise these categories in a hierarchical
tree structure. This incremental clustering mechanism should not be affected by the
order of observations because it deals with a design environment that changes over time.
This means that the learned categories are to be modified in response to the changes in
the environment. These conditions form the criteria of the task at hand. In this task
neither what is learned nor the environment that SLiDe learns from are fixed. Both
change over time as a reflection of the concept of situatedness.

The Situator and Restructuring Situator are integrated as implemented in the Incremental
Situator module within SLiDe using the modified unsupervised incremental clustering
mechanism in COBBIT (Kilander and Jansson, 1993). The Incremental Situator module
is written in the C language and implemented in a Unix environment. The main reason
for selecting COBBIT is that its focus on concept drift as well as its combination with
COBWEB (Fisher, 1987) employ a unique clustering mechanism that fits the criteria of
the task at hand. Overviews of clustering mechanisms and especially the unsupervised
incremental clustering mechanism are presented in the following subsections.

5.4.1 An overview of clustering mechanisms
Clustering mechanisms automatically discover categories of observations that are similar
in one or more dimensions. Once uncovered, these categories might suggest features that
characterise observed knowledge. Ideally, clustering organises a set of observations in a
way that facilitates more efficient problem solving. It is not intended here to compare
different clustering mechanisms because they can be found elsewhere (Fisher and
Schlimmer, 1988; Gennari et al., 1989; Fisher et al., 1993; Iba and Langley, 1999;
Langley, 1999). The purpose of this overview is to investigate different clustering
mechanism and select the mechanism that best meets the criteria for the task at hand.
Clustering has long been studied in numerical taxonomy, where observations are grouped
and segregated based on numeric measures of similarity and dissimilarity. Early work in
conceptual clustering produced the CLUSTER system (Michalski and Stepp, 1983),
which does not form classes based on similarity between observations, but seeks a
partition whose categories are best described conjunctively, with a limited form of

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 77

disjunction allowed. Each conjunction specifies attribute values that are true for all
members of the corresponding cluster. In contrast to CLUSTER’s conjunctive
representation, COBWEB (Fisher, 1987) forms classes that may be best represented
probabilistically, described by probability distributions of the attribute values exhibited by
their members. Like CLUSTER, COBWEB associates interpretations with clusters, but
their probabilistic representations are more relaxed than those of CLUSTER’s
conjunctive scheme. COBWEB is an incremental unsupervised clustering mechanism.
Like COBWEB, the AUTOCLASS system (Cheeseman and Stutz, 1996) is a clustering
method that represents clusters probabilistically. It differs from COBWEB in that it takes
a Bayesian position in the classification and incorporates a probabilistic variant of the
non-incremental algorithm known as expectation maximisation (Iba and Langley, 1999).
COBBIT (Kilander and Jansson, 1993) is a variant on COBWEB designed explicitly to
deal with environments that change over time and its clustering structures are not
dependent on the order of the observations.

5.4.2 Features of the Incremental Situator
The Incremental Situator module in SLiDe has been implemented using the unsupervised
incremental clustering mechanism as a utilisation of COBBIT (Kilander and Jansson,
1993). This clustering mechanism uses a nominal description of knowledge, categorises
the representations probabilistically, provides a description for each category, organises
these categories hierarchically and most importantly is not affected by the order of
representations as it deals with environments that change over time. This means the
learned categories are modified in response to the change in the environment. There are
some distinctive features that identify this unsupervised incremental clustering
mechanism. These are introduced in the following subsections.

 5.4.2.1 Unsupervised incremental learning

In non-incremental learning methods, all observations must be present at the outset of
system execution. In contrast, incremental learning methods accept a stream of
observations that are assimilated one at a time. A primary motivation for using
incremental learning is that knowledge may be rapidly updated with new observations.
Incremental learning methods do not extensively reprocess previously encountered
observations while incorporating a new one. Without this constraint, one could make any
non-incremental system incremental simply by adding the new observations to an existing
set and reapplying the non-incremental method to the extended set.

In the Incremental Situator, the incremental unsupervised learning, as developed in
COBWEB, uses an incremental hill-climbing learner. Hill-climbing is a classic AI search
method in which one applies all operator instantiations, compares the resulting states
using an evaluation function, selects the best state and iterates until no more progress can
be made. Incremental hill-climbing searches an n-dimensional space over which some
function f is defined. This function determines the shape of the n-dimensional
surface and the learner attempts to find that point with the highest f score. New
observations modify the contours of the surface. The hills and valleys of the incremental
hill-climbing learner’s space change as it gets new observations. The ability to achieve
high quality descriptions for categories, despite the limitations of hill-climbing such as the

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 78

tendency to halt at local optima and dependence on step size, is maintained by extending
the set of available operators.

5.4.2.2 Clustering and learning

Classification and learning are intertwined, as originally developed in COBWEB, with
each observation being stored down through a hierarchy and altering this hierarchy in its
passage. COBWEB uses a slightly generalised version of Gluck and Corter’s (1985)
function to control its classification and learning behaviour. Category utility is a heuristic
measure to guide the search as a means of predicting the basic level in human
classification hierarchies. It favours clustering that maximises the potential of inferring
information. In doing this, it attempts to maximise intra-class similarity, predictability,
and inter-class differences and predictiveness. It also provides a principled tradeoff
between both of them. For any set of observations, any attribute-value pair, Ai = Vij, and
any class Ck, one can compute P(AI = Vij|Ck), the conditional probability of the value
given membership in the class, or its predictability. One also can compute P(Ck|Ai = Vij),
the conditional probability of membership in the class given this value, or its
predictiveness. Combining these measures of individual attributes and values into an
overall measure of clustering quality specifically as show in expression (1), represents a
tradeoff between predictability P(Ai = Vij|Ck) and predictiveness P(Ck|Ai = Vij) that has
been summed across all classes (k), attributes (i), and values (j).

The probability P(Ai = Vij) weights the individual values, so that frequently occurring
values play a more important role than those occurring less frequently. Using Bayes’
rule, we have P(Ai = Vij) P(Ck|Ai = Vij) = P(Ck) P(Ai = Vij|Ck), enabling us to transform
expression (1) into an alternative form shown in expression (2).

Gluck and Corter (1985) have shown that the sub-expression ∑i ∑j P(Ai = Vij|Ck)
2 is the

expected number of attribute values that one can correctly guess for an arbitrary member
of class Ck. This expectation assumes a probability matching strategy, in which one
guesses an attribute value with a probability equal to its probability of occurring. Thus, it
assumes that one guesses a value with probability P(Ai = Vij|Ck) and that this guess is
correct with the same probability. Building on expression (2), the category utility is
defined as the increase in the expected number of attribute values that can be correctly
guessed, given a set of n categories, over the expected number of correct guesses
without such knowledge. The latter term is simply (∑i ∑j P(Ai = Vij)

2) , so one must
subtract this from expression (2). The complete form for category utility is as shown in
expression (3):

(1) C|VAP VA|CP VAP kij i ij i kij i

jik

)()()(===∑∑∑

n

(3) VAP - C|VAPCP ij i

ji

kij i

ji

k

n

1k

22)()()(==

=
∑∑∑∑∑

(2) C|VAP CP kij i

ji

k

k

2)()(=∑∑∑

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 79

The difference between two expected numbers is divided by n, the number of categories.
This division enables one to compare different size clustering, which must occur
whenever considering merging, splitting or creating a new category. The choice of
category utility as a heuristic measure dictates a category description other than the
logical, typically conjunctive, descriptions used in AI. Category utility can be computed
from P(Ck) of each category in partition and P(Ai = Vij|Ck) for each attribute value. A
summary description that lists attribute values and associated probabilities is a
probabilistic category.

5.4.2.3 Hierarchical tree structure of situational categories

Learned categories are organised and structured in a hierarchy. This type of data
structure contains a set of nodes partially ordered by generality. Each node in the
hierarchy represents a category and also contains a description of that category. In
contrast, most learning from examples (Mitchell, 1982; Michalski and Stepp, 1983)
focuses on learning one or a few categories at a single level of abstraction. Methods of
constructing decision trees (Quinlan, 1986) are closer in spirit, but lack any explicit
descriptions of the nodes themselves. The presence of hierarchical organisation of
knowledge suggests an approach for classifying new observations from the environment.
One simply begins at the most general (top) node and sorts the new observations down
through the hierarchy. This classification method is very similar to that used by the
decision tree systems. The ability to achieve high quality descriptions for categories,
despite the limitations of hill-climbing such as the tendency to halt at local optima and
dependence on step size, is maintained by extending the set of available operators.
Rather than restricting search to be unidirectional, both generalisation and specialisation
operators are supplied. Bidirectional mobility allows such an incremental system to
recover from unsuccessful learning path. The four operators that COBWEB (Gennari et
al., 1989; Iba and Langley, 1999) invokes to alter the structure of the clustering's
hierarchy are: extending the hierarchy downward; creating disjunct at an existing level;
merging two existing classes; and splitting an existing category. This is performed as in
the algorithm shown in Table 5.1 and illustrated in Figure 5.3.

5.4.2.4 Manipulation of concept drift

The incremental clustering mechanism in COBWEB is designed to work under a
condition of clustering constancy that does not distinguish between new and old
observations, requiring new features to replace previous ones by quantity, just as most
other machine learning systems. When COBWEB is incrementally and sequentially
exposed to the extensions of a set of clusters, it retains all observations, disregards the
age of a category and may create different categorical structures dependent on the order
of the observations. These three characteristics make COBWEB sensitive to the effects
of concept drift, which means that the intention of clustering is not stable during the
period of learning. Dependencies of relationships among shape semantics change over
time whenever changes take place in the design environment. The conditional probability
reflected by the new observations change also and are no longer accurately represented
by the categories in the machine learning system. A shared behaviour of systems that
track categories intentionally is that they maintain generalisations under a notion of
recency and non-monotonicity. The learned situational categories are meant to represent

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 80

the situations within which design knowledge (shape semantics), were recognised.
Hence, some aspects of the situations might be revealed at different points of time in the
observations and usually not in order of their importance. For such situational categories
to be appropriately constructed, the learner must integrate these kinds of knowledge to
construct the situations without being affected by the order of observations. In order to
advance the incremental clustering mechanism in COBWEB to achieve these objectives
we selected COBBIT that deals with an environment that changes over time and its
clustering structures are not dependent on the order of the observations.

Table 5.1 The algorithm used to alter the structure of the clustering's hierarchy (Gennari
et al., 1989).

Input • The current node N of the category hierarchy
• An unclassified (attribute-value) Observation (O)

Top-level call • COBWEB (Top-node, O)

Variables • C, P, Q and R are nodes in the hierarchy
• U, V, W and X are clustering scores

COBWEB(N, O)
If N is a terminal node.

Then Create-new-terminals (N, O)
Incorporate (N, O)

Else Incorporate (N, O)
For each child C of node N,

Compute the score for placing O in C
Let P be the node with the highest score W
Let R be the node with the second highest score
Let X be the score for placing O in a new node Q
Let Y be the score for merging P and R into one node
Let Z be the score for splitting P into its children

If W is the best score
Then COBWEB (P, O) (Place O in Category P)

Else if X is the best score
Then initialise Q’s probabilities using O’s values

(place O by itself in the new category Q)
Else if Y is the best score

Then let G be Merge (P, R, N)
COBWEB (G, O)

Else if Z is the best score
Then Split (P, N)

COBWEB (N, O)

Results • A category hierarchy that classifies the observations

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 81

Figure 5.3 Learning operators used to modify the structure of a hierarchy of probabilistic
clustering: (a) extending the hierarchy downward; (b) creating a disjunct at an existing level; (c)

merging two existing classes; and (d) splitting an existing category. Newly created nodes are
shown in grey (Iba and Langley, 1999).

These modifications equipped COBWEB with the dynamic deletion of old observations
using a queue of observations and continuous monitoring of performance. The
COBWEB standard control loop (read-learn) has been extended in COBBIT to be (read-
evaluate-learn-trim) and performed as shown in Table 5.2. The control parameters of the
upper and lower bounds (u and l) on the number of elements in the queue at any time,
update time, are set by the user. A continuous monitoring of performance algorithm is
implemented by having a queue of training observations and dynamically altering the size
of the queue depending on its performance. As each observation is presented to
COBBIT, it attempts to predict each and every attribute that has a known value. The
percentage of correctly predicted attributes is an output of the current performance
index. The trend of this index allows for corrective action as soon as a drop in the
performance is observed. The performance index is used to determine the size of the
queue. This behaviour is intended to remove old observations with a low performance
index from the hierarchy. Also, by using the queue mechanism and the subtraction of low
performance index observations, ordering effects in the category hierarchies are only
applicable to the training observations in the queue since COBBIT does not alter the
input ordering in any way. The learned situational categories are continuously influenced
by recent observations to confirm (reinforce) or degrade (decay) learned categories or
create new ones.

The Restructuring Situator is triggered to update the learned situational categories
whenever the Recogniser module detects any new observations from the design
environment. The Restructuring Situator facilitates the incremental clustering mechanism
in COBBIT to update what has been learned. For instance, if a new set of observations is
experienced in SLiDe, the Restructuring Situator analyses the learned knowledge taking
into account the new observations and tries either to fit them within the existing
categories or to create new categories or sub categories to accommodate them. The
restructuring of situational categories is not a mere adding of a new situational category
to the existing ones but rather it is an overall restructuring that has included the
additional observations and accommodated them in the form of subcategories within the
previously learned situational categories. This approach fits well to play the role of the
Incremental Situator in SLiDe in which neither what is learned nor the environment that

(a) (b)

(c) (d)

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 82

SLiDe interacts with are fixed. Both change over time as a reflection of the concept of
situatedness.

Table 5.2 An extended control algorithm (read-evaluate-learn-trim) using the queue of
observations (Kilander and Jansson, 1993).

Begin • Object = the next observation (O) from the input

Loop • If Object is a training observation
 Then

Error = Prediction_Error(object)
root = COBWEB (object, root)
Queue = Queue + Object
MaxQSize = ((1-error) * (u-l)) + l

If Length (Queue) > MaxQSize
Then

N = 1 + (length (Queue) - MaxQSize)
 4

While N > 0 Do
Extract_Object (Head (Queue))
Queue = Queue - Head(Queue)
N = N - 1

Else
Predict missing values and report

5.4.3 Illustration of how the Incremental Situator works
This section presents a simple illustration of how the Incremental Situator constructs the
situational categories, its hierarchical tree structure and modifies the hierarchy in
response to a new observation. An example will be considered in which a set of
observations that consists of four observations constructed by the Recogniser module
from a set of four representations generated using the Generator module with the
interaction of the designer. The Situator module initialises its hierarchy into a single
node, basing the values of this category’s attributes on the first observation. Upon
encountering a second observation, the Situator averages its values into those of the
category and creates two children, one based on the first and another based on the
second. The Situator module continues to sort each observation through its clustering
hierarchy in which observations are stored as leaves of the clustering hierarchical tree
structure and the root node summarises all observations seen in the domain as shown in
Figure 5.4. When a new observation is experienced by SLiDe, the Restructuring Situator
is triggered to learn commencing with retrieving potential categories. To do so, at each
node the Restructuring Situator retrieves all children and considers placing the
observation in each of these categories. Each of these constitutes an alternative
clustering that incorporates the new observation. Using an evaluation function, it then
selects the best clustering. The Restructuring Situator also considers creating a new
category that contains only the new observation, and compares this clustering to the best
clustering that uses only existing categories. If the clustering based on existing classes
wins the competition, the Restructuring Situator modifies the probability of the selected

Chapter 5: A Computational System for Situated Learning in Designing (SLiDe) 83

category and the conditional probabilities of its attribute values. Thus, predictability
scores for values occurring in the observation will increase, whereas those for values not
occurring will decrease as shown in Figure 5.5. The Restructuring Situator continues to
sort the observations down through the hierarchical tree structure, recursively
considering the children of the selected category. If the clustering with the singleton class
emerges as the winner, the Restructuring Situator creates this new category and makes it
a child of the current parent node. The system bases the values for this new category’s
attributes on those found in the observation, giving them each predictability scores of
one as shown in Figure 5.6. The results of using the Incremental Situator module are a
hierarchical tree structure of the learned category along with a description of the
regularity for each situational category generated and drawn in a postscript file.

Figure 5.4 A hierarchical tree constructed by the Situator module.

Figure 5.5 A revised hierarchical tree constructed by the Restructuring Situator module.

Figure 5.6 A revised hierarchical tree constructed by the Restructuring Situator module.

P(root) = 1.0

P (C2 | root) = 0.33P (C1 | root) = 0.33

P (C3 | C1) = 0.50 P (C4 | C1) = 0.50 P (C5 | C2) = 0.50 P (C6 | C2) = 0.50 P (C7 | C3) = 1.0

P (C3 | root) = 0.33

P(root) = 1.0

P (C2 | root) = 0.50P (C1 | root) = 0.50

P (C3 | C1) = 0.50 P (C4 | C1) = 0.50 P (C5 | C2) = 0.50 P (C6 | C2) = 0.50

P(root) = 1.0

P (C2 | root) = 0.60P (C1 | root) = 0.40

P (C3 | C1) = 0.50 P (C4 | C1) = 0.50 P (C5 | C2) = 0.33 P (C6 | C2) = 0.33 P (C7 | C2) = 0.33

Chapter 6

Application of SLiDe

This chapter presents a demonstration of using SLiDe to learn the applicability conditions,
ie situatedness, of shape semantics within which they were recognised from sets of
observations constructed from various representations. SLiDe modules are used to generate
multiple representations of a design composition, detect and recognise the shape semantics
in these representations, construct a set of observations from the corresponding
representations and learn the applicability conditions of these shape semantics in the form
of situational categories. These situational categories represent the regularities of
relationships among shape semantics across the observations. SLiDe updates what it has
learned in response to the newly constructed observations. The update is in terms of
reinforcing, decaying or reconstructing what has been previously learned.

6.1 Introduction

The demonstration of SLiDe in this Chapter aims at showing its capabilities to generate
multiple representations of a design composition; recognise shape semantics from these
representations; construct sets of observations from the corresponding representations;
and learn the situatedness of shapes semantics. The regularities of these relationships
are clustered in the form of situational categories. The situatedness of shape semantics
is updated in response to the new observations of the design composition. The
demonstration of SLiDe proceeds in the following sequence:

(i) Select an example for an architectural design composition and draw an initial
representation of it;

(ii) Use the Generator module to develop a set of representations from the initial
representation of the selected design composition;

(iii) Use the Recogniser module to detect shape semantics in each representation
and construct a set of observations for the corresponding representations
accordingly;

(iv) Use the Incremental Situator module to learn the situatedness of shape
semantics through learning the regularities of relationships among shape
semantics across the observations and cluster them in the form of situational
categories;

(v) Use the Generator module to produce another set of representations of the
same design composition;

(vi) Use the Recogniser module to construct a second set of observations;

Chapter 6: Application of SLiDe 85

(vii) Use the Incremental Situator module to update the situatedness of recognised
shape semantics and accommodate the new observations; and

(viii) Repeat the steps (v), (vi) and (vii) three or more times and monitor the
updates of the learned situational categories (situatedness of shape semantics),
and the overall restructuring of their hierarchical tree structure.

6.2 Selection of an Architectural Design Composition

SLiDe manipulates architectural design compositions composed of linearly bounded
shapes. An architectural design composition of the Exter Library (in the form of a floor
plan), designed by Louis Khan in New Hampshire as shown in Figure 6.1 is selected as
an example to demonstrate the capabilities of SLiDe.

Figure 6.1 An example of architectural design composition: The Exter Library, in the form of a
floor plan, designed by Louis Khan in New Hampshire (Clark and Pause, 1996).

6.3 Development of Multiple Representations

The selected design composition is scanned and imported into AutoCAD as shown in
Figure 6.2(a). The imported design composition is simplified by the designer redrawing
an initial representation (in the form of line segments) into AutoCAD as shown in
Figure 6.2(b). The Generator module is loaded and commences with this initial
representation of the design composition. The Generator requests the designer to draw a
frame around the design composition. The selected frame is shown in Figure 6.3(a). The
Generator re-represents the design composition in the form of infinite maximal lines.
The Generator module achieves this by extending the line segments to the boundary of
the frame drawn by the designer as shown in Figure 6.3(b). The intersections of the
infinite maximal lines within this frame are detected and saved by the Generator module
defining the design space to be searched. This module then requests the designer to
select a shape of interest from among these intersections of infinite maximal lines. The
Generator module searches the design space for any congruent shapes corresponding to
the selected shape and highlights all the corresponding congruent shapes in shaded areas
so as to be easily perceivable by the designer. The Generator does not allow for
overlapping shapes while searching for corresponding congruent shapes. Then, the
Generator module produces the first representation (N1) composed of the corresponding
congruent shapes and the leftover of the initial representation. Figures 6.4 (a), (b) and
(c) show the dimensional and geometrical constraints of the selected shape, highlighting

Chapter 6: Application of SLiDe 86

the selected shape and the first representation (N1) developed using the Generator
module respectively. The designer continues to select more shapes of interest, one at a
time. Then, the Generator module continues to search the design space and generates a
set of representations, in the form of bounded polyline shapes, each of which is
composed of corresponding congruent shapes of the designer's selected shape and the
leftover of the initial representation. The first set of multiple representations is
completed when the designer decides not to select any more shapes at that time. The
results of using the Generator module to produce other different representations of the
design composition are shown in Figures 6.5(a) to 6.5(g) showing the representations
from (N2) to (N9) respectively.

Figure 6.2 (a) Scanned architectural design composition in Figure 6.1 is imported in AutoCAD,
(b) a simplified design composition is drawn by the designer (user) in AutoCAD and serves as

an initial representation.

Figure 6.3 (a) Selected frame drawn by the designer around the design composition, (b) infinite
maximal lines of the design composition produced by the Generator module.

(a) (b)

(a) (b)

Chapter 6: Application of SLiDe 87

Figure 6.4 The Generator module produces: (a) dimensional and geometrical constraints of the
selected shape, (b) highlighting the selected shape by the designer, and (c) first developed

representation (N1).

Figure 6.5 (a-b) A set of multiple representations developed using the Generator module
through the interaction with the designer to select shapes of interest: (a) and (b) show the

representations N2 and N3.

(a): N2 (b): N3

(a)

(b)

(c): N1

Chapter 6: Application of SLiDe 88

Figure 6.5 (c-g) A set of multiple representations developed by the Generator module through
the interaction with the designer to select shapes of interest: from (c) to (g) show the

representations from N4 to N9 respectively.

(c): N4 (c): N5

(d): N6 (e): N7

(f): N8 (g): N9

Chapter 6: Application of SLiDe 89

6.4 Constructing a set of Observations from the Developed
set of Representations

A set of representations developed using the Generator module forms the initial design
environment for the Recogniser module to interact with and learn from. The Recogniser
module detects shape semantics at each representation and produces a corresponding
observation. Some examples of recognised shape semantics in some of the
representations are shown in Figures 6.6 and 6.7. The Recogniser module constructs
each observation from the accumulation of recognised shape semantics in each
representation. Consequently, after detecting the first set of representations, a
corresponding set of observations is constructed. Table 6.1 shows the set of
observations (On) produced by the Recogniser module from the set of representations
developed using the Generator module as shown in Figures 6.4 and 6.5. In Table 6.1,
Mr, Mt, Rs, Rn, Ad, Ce and Dm refer to reflective symmetry around an axis, reflective
symmetry around more than one axis, simple rotation, cyclic rotation adjacency,
centrality and dominance respectively. The Recogniser module manipulates a wide
range of architectural design compositions in linearly bounded shapes. Examples of the
Recogniser capabilities to recognise various types of shape semantics from different
design compositions are shown in Appendix A.

Figure 6.6 An example of reflective symmetry (Mr) around an axis found by the Recogniser
module in the representation N8.

ei = 1 2

ei = 3 4

ei = 5 6

12

 3 4

6 5

Chapter 6: Application of SLiDe 90

Figure 6.7 Examples (a) and (b) of cyclic rotation (Rn) found by the Recogniser module in the
representations N1 and N3.

Table 6.1 The first set of observations produced using the Recogniser module to detect shape
semantics in the developed representations shown in Figures 6.4 and 6.5.

Representation

No.

Corresponding Observation
(On)

N1 O1 Mt , Rn , Ce , Ad

N2 O2 Mt , Rn , Ce , Ad

N3 O3 Mt , Rn , Ce , Ad

N4 O4 Mr , Ce , Ad

N5 O5 Mt , Rn , Ce , Ad

N6 O6 Mt , Rn , Ce , Ad

N7 O7 Rs , Ad

N8 O8 Mr , Ce , Ad

N9 O9 Mr , Ce , Ad

(a)

(b)

ei = 1 2 3 4

ei = 5 6 7 8

ei = 9 10 11 12

1

4

3

2

5

67

8

910

11 12

ei = 1 2 3 4

ei = 5 6 7 8

ei = 9 10 11 12

ei = 13 14 15 16

1

2

3

4 5

67

8
9

1011

12

13

14

15

16

Chapter 6: Application of SLiDe 91

6.5 Learning the Situatedness of Recognised Shape
Semantics

The set of observations constructed using the Recogniser module is used as the first
input to the Incremental Situator module to learn the situatedness of shape semantics in
relation to the situations within which they were recognised. The situatedness of shape
semantics is learned in the form of the regularities of relationships among shape
semantics across the observations. These regularities are clustered in a hierarchical tree
structure. The Incremental Situator module employs its incremental unsupervised
clustering mechanism to search for the regularities of relationships among shape
semantics in the observations and categorises them in relation to situations within which
they were recognised. There are no prior categories defined to the Incremental Situator
module to measure the match or mismatch of these observations to them but rather they
are constructed based on the regularities found in these observations. This reflects that
the situatedness of knowledge is not predetermined but rather constructed. The result of
using the Incremental Situator module after exposure to the first set of observations is
indicated in Figure 6.8. The graph shown in Figure 6.8 is one of the automated forms
produced by the Incremental Situator module, in a reduced format, representing the
situational categories and their hierarchical tree structure. Each situational category is
associated with a summary description of the regularity in its observations.

Figure 6.8 Two situational categories Cs1 and Cs2 learned by the Incremental Situator module
from the set observations constructed by the Recogniser module as shown in Table 6.1; (a)

shows a summary description of the regularity of relationships among shape semantics across
some observations; (b) shows an observation composed of a group of shape semantics

recognised from a representation.

Cs1

Cs2

(a) (b)

Chapter 6: Application of SLiDe 92

In Figure 6.8, there are two learned situational categories Cs1 and Cs2 each of which
represents a regularity across some of the observations among a group of shape
semantics within which they were recognised. Cs1 represents the regularity of
relationships among the shape semantics Mr, Ce and Ad that refer to reflective symmetry
around an axis, centrality and adjacency respectively. Cs2 represents the regularity of
relationships among the shape semantics Mt, Rn, Ce and Ad where Mt refers to reflective
symmetry around more than one axis and Rn refers to cyclic rotation. The entities within
a situational category, in a state description of a particular state of designing, are
candidates for both knowledge and the situation. For instance, in Cs2 each shape
semantic could be the knowledge in focus and all the remaining entities within this
situational category become candidates for the situation of that knowledge. The
situatedness of design knowledge serves as the applicability conditions of that
knowledge within which it was recognised. Thus, the applicability conditions have the
potential to guide the use of these shape semantics. For instance, choosing reflective
symmetry (Mt) to be the current knowledge in focus F1 then the other entities of Cs2

which are Rn, Ce and Ad construct the situation t1 within which Mt was recognised and
serves as the applicability conditions, ie situatedness, of reflective symmetry. In other
words, Mt is situated within these shape semantics Rn, Ce and Ad in the design
environment. Alternatively, as illustrated in Figure 6.9, if centrality (Ce) is chosen to be
the knowledge in focus F2 then the other entities of Cs2 which are Mt, Rn and Ad

construct the situation t2 of Ce within which it was recognised. This is a duality between
the entities within the same situational category, ie duality between knowledge and the
situation. Another example of duality from another learned situational category Cs1 is
shown in Figure 6.10.

Figure 6.9 An example of the duality
between knowledge and situation within the

situational category Cs2.

Figure 6.10 An example of the duality
between knowledge and situation within the

situational category Cs1.

A certain piece of knowledge could be recognised in more than just one situation. This
means that there are more than one group of applicability conditions or different kinds
of situatedness for a single piece of knowledge based on where it was recognised. For
instance, from looking at both Figures 6.9 and 6.10, it may be seen that centrality (Ce)
has two groups of applicability conditions, ie has two different situations t2 and t11.

Mt

RnAd

Focus

Situation

Ce

F2

t2

Ce

RnAd

Focus

Situation

Mt

F1

t1

Duality

Mr

Ad

Focus

Situation

Ce

F11

t11

Ce

Ad

Focus

Situation

Mr

F10

t10

Duality

Chapter 6: Application of SLiDe 93

6.6 Incremental Learning about the Situatedness of Shape
Semantics

Due to the fluid, dynamic and situated nature of designing, changes take place in the
design composition while designing. Such changes have an effect on the relationships
among shape semantics and the situatedness of shape semantics are influenced
correspondingly. The effect on the situatedness of shape semantics could be in terms of
reinforcing, decaying or reconstructing what has been learned previously or new ones
could emerge from the new observations. One of the ways in which these changes could
be perceived is that the designer is further interested to re-interpret the same design
composition which leads to developing other representations of the same design
composition. The Generator module is used to satisfy the designer’s interest in
developing further representations and the result is a new set of representations as
shown in Figure 6.11. The generation of this new set of representations triggers the
Recogniser module to detect shape semantics in these representations and construct a
corresponding new set of observations as shown in Table 6.2.

Figure 6.11 A second set of representations developed using the Generator module with the
interaction of the designer to select other shapes of interest: (a) and (b) show the representations

N10 and N11.

Table 6.2 The second set of observations produced using the Recogniser module to detect shape
semantics in the generated representations shown in Figure 6.11.

Representation

No.

Corresponding Observation
(On)

N10 O11 Mr , Rs , Ce , Ad

N11 O11 Mr , Rs , Ce , Ad

The Incremental Situator module is triggered to update what has been learned whenever
the Recogniser module constructs any new set of observations from the design
environment. The Incremental Situator module facilitates the incremental clustering

(a): N10 (b): N11

Chapter 6: Application of SLiDe 94

mechanism to update what has been learned previously taking into account the new
observations and trying either to associate them within the existing categories or to
create new categories or sub categories to accommodate them. Figure 6.12 shows the
learning results produced by the Incremental Situator module after having this new set
of observations as a new input. It created a new situational category Cs3 that clustered
both of the two new observations into one new situational category. This is based upon
the regularities of relationships among shape semantics found in them and their
distinction from the previous observations. In Figure 6.12, there is a new learned
situational category Cs3 accommodating the new set of observations. Cs3 represents the
regularity of the relationships among the shape semantics Mr, Rs , Ce and Ad where Rs

refers to simple rotation. An illustration of this regularity and an example of the duality
among its entities are show in Figure 6.13 wherein it may be seen that there is another
situation within which the centrality (Ce) was recognised.

Figure 6.12 A newly learned situational category Cs3 emerged in response to the second set of
observations.

Assuming that once again while designing, the designer has chosen to develop further
representations of the same design composition using the Generator module. This
constitutes the third set of representations as shown in Figure 6.14. Thus, the
Recogniser module is triggered to detect the shape semantics in these representations
and constructs a corresponding set of observations as shown in Table 6.3. The
Incremental Situator module accommodated the new set of observations into two new
categories Cs4 and Cs5 as shown, in a reduced format, in Figure 6.15.

Cs1

Cs3

Cs2

Chapter 6: Application of SLiDe 95

Figure 6.13 Newly learned situational category Cs3 and an example of the duality among its
entities, knowledge in focus and its situation.

Figure 6.14 The third set of representations developed using the Generator module through the
interaction with the designer to select other shapes of interest: (a) to (d) show the

representations form N12 to N15.

Mr

RsAd

Focus
Situation

Ce

F21
t21

Ce

RsAd

Focus

Situation

Mr

F20

t20

Duality

(a): N12 (b): N13

(c): N14 (d): N15

Chapter 6: Application of SLiDe 96

Table 6.3 The third set of observations produced using the Recogniser module to detect shape
semantics in the generated representations shown in Figure 6.14.

Representation

No.

Corresponding Observation
(On)

N12 O12 Mr , Mt , Rn , Ce , Ad

N13 O13 Mt , Rn , Ce , Ad , Dm

N14 O14 Mt , Rn , Ce , Ad , Dm

N15 O15 Mr , Mt , Rn , Ce , Ad

Figure 6.15 Two new learned situational categories Cs4 and Cs5 emerged in response to the third
set of observations.

The results shown so far from using the Incremental Situator module demonstrate how
the new observations were accommodated by adding new situational categories to the
existing ones (previously learned), due to their distinctive difference from previous
observations. On the other hand, from other sets of observations there is the possibility
of reconstructing the situatedness of design knowledge. Since it is not known at the time
of learning what is useful knowledge and what is not, all regularities need to be treated
as potentially useful knowledge. The Incremental Situator module has the capability to
restructure the hierarchy of its situational categories while accommodating the new set
of observations. For instance, considering a fourth set of representations developed
using the Generator module as shown in Appendix B, the Recogniser module
constructed the fourth set of observations accordingly as shown in Table 6.4. The
Incremental Situator module accommodated this new set of observations into two new
categories Cs6 and Cs7 and reinforced what has been learned with the situational

Cs4

Cs5

Cs2

Cs3

Cs1

Chapter 6: Application of SLiDe 97

category *Cs4. This is achieved not only through just adding these two categories to the
existing structure of previously learned situational categories but rather restructuring the
overall hierarchy to include these new categories as shown in Figure 6.16. Furthermore,
from a fifth set of representations produced using the Generator module as shown in
Appendix C, the Recogniser module constructed the fifth set of observations shown in
Table 6.5. Based on this set of observations the Incremental Situator module
reconstructed the situatedness of what had been learned previously, produced a
reconstructed situational category Cs1(a) and reinforced what had been previously
learned in both *Cs2 and *Cs3 in addition to creating a new situational category Cs8 as
shown in Figure 6.17.

Table 6.4 The fourth set of observations produced using the Recogniser module to detect shape
semantics in the generated representations shown in Appendix B.

Representation

No.

Corresponding Observation
(On)

N16 O16 Mr , Mt , Rs , Rn , Ce , Ad

N17 O17 Mr , Mt , Rs , Rn , Ce , Ad

N18 O18 Mr , Mt , Rn , Ce , Ad

N19 O19 Mr , Mt , Rn , Ce , Ad

N20 O20 Mr , Mt , Rn , Ce , Ad

N21 O21 Mr , Mt , Rn , Ce , Ad

N22 O22 Mr , Mt , Rn , Ce , Ad

N23 O23 Rn , Ce , Ad

N24 O24 Rn , Ce , Ad

Table 6.5 The fifth set of observations produced using the Recogniser module to detect shape
semantics in the generated representations shown in Appendix C.

Representation

No.

Corresponding Observation
(On)

N25 O25 Mr , Rs , Ce , Ad

N26 O26 Rs , Ce , Ad

N27 O27 Mr , Rs , Rn , Ce , Ad

N28 O28 Mt , Rn , Ce , Ad

N29 O29 Mt , Rn , Ce , Ad

N30 O30 Mt , Rn , Ce , Ad

N31 O31 Mt , Rn , Ce , Ad

N32 O32 Mr , Ce , Ad

N33 O33 Mr , Ce , Ad

N34 O34 Mt , Rn , Ce , Ad

N35 O35 Mt , Rn , Ce , Ad

N36 O36 Mt , Rn , Ce , Ad

N37 O37 Mt , Rn , Ce , Ad

N38 O38 Mt , Rn , Ce , Ad

N39 O39 Mr , Mt , Rn , Ce , Ad

Chapter 6: Application of SLiDe 98

Figure 6.16 An overall restructuring of the hierarchical tree structure wherein situational
categories Cs6 and Cs7 emerged and *Cs4 is reinforced (shown dotted), in response to the fourth

set of observations shown in Table 6.4.

Figure 6.17 Reconstructing a previously learned situational category Cs1(a) (shown dashed);
reinforcing *Cs2 and *Cs3 (shown dotted); and creating a new situational category Cs8 in
response to the most recent (fifth), additional set of observations shown in Table 6.5.

Cs8

*Cs3

Cs1(a)

*Cs2

Cs7

Cs5

*Cs4

Cs6

Cs6

*Cs4

Cs7

Cs5

Cs2

Cs3

Cs1

Chapter 6: Application of SLiDe 99

The Incremental Situator module has been implemented with a menu driven interface
that allows the user to navigate the learned situational categories presented in the graph
(hierarchical tree structure). The interface allows the user to change the orientation of
the graph on the screen either vertically or horizontally as shown in Figures 6.18(a) and
(b) respectively. Some statistics about the hierarchical tree structure of the learned
categories from the first observation are shown in Figure 6.18(c). These statistics cover
the created nodes on the hierarchical tree structure and the merge and split of situational
categories that occurred during learning. Figure 6.19(a) shows the result of using the
Restructuring Situator module to update what had been learned and restructure the
hierarchical tree accordingly in response to new sets of observations. Figure 6.19(b)
shows some statistics about the updated hierarchical tree structure in which merging
occurs between situational categories. The interface allows for zooming in and out to
see the description of each of the observations and the categories as shown in Figure
6.20.

Figure 6.18 (a) and (b) Snapshots of the hierarchical tree structure constructed from the first set
of observations using the Situator module shown in a vertical and a horizontal direction

respectively and (c) some statistics about this hierarchical tree structure.

(a) (b)

 (c)

Chapter 6: Application of SLiDe 100

Figure 6.19 (a) shows the result of updating what had been learned and restructuring the
hierarchical tree accordingly in response to the fifth set of observations and (b) shows some

statistics about the updated hierarchical tree structure in which merging occurs between
situational categories.

(a)

(b)

Chapter 6: Application of SLiDe 101

Figure 6.20 Zooming in within the graph to see the description of the observations and their
category.

6.7 Discussion

This demonstration illustrated the use of SLiDe and its three main modules: Generator,
Recogniser and Incremental Situator to develop multiple representations as a platform
to learn from; construct observations from these representations; and learn the
situatedness of shape semantics. From the five sets of observations constructed from
five sets of multiple representations accumulating to 39 representations, the situatedness
of recognised shape semantics are summarised in Figure 6.21 in the form of 8
situational categories shown in the graph in Figure 6.17. In Figure 6.21, there are three
kinds of situational categories: constructed (Cs5, Cs6, Cs7 and Cs8), reinforced (*Cs2, *Cs3

and *Cs4) and reconstructed (Cs1(a)). The extended control algorithm (read-evaluate-
learn-trim) using the queue as discussed in Section 5.4.2.4 in the incremental clustering
mechanism used in the Incremental Situator manipulates internally the decay of
observations by deleting the ones with the lowest performance index off the queue. The
shape semantics within each situational category are interlinked based on the situations
within which they were recognised. Within each situational category, if a certain shape
semantic were chosen to be the knowledge in focus, then the remaining shape semantics
form the situatedness of that shape semantic and have the potential to guide its use
based upon that within which it was learned previously. At the same time, within each
situational category there is the possibility of the duality between knowledge in focus
and other entities within the same situational category. The results within the group of
learned situational categories is that for one knowledge in focus there might be a
number of possible situations within which it could be recognised. Such possibilities
allow different alternatives for the designers to choose from based on their interests.
The chosen situation would be the one to guide the use of knowledge in focus while
pursuing it further in designing.

Chapter 6: Application of SLiDe 102

Figure 6.21 Three types of situational categories: constructed, reinforced and reconstructed,
within the group of learned situational categories from the five sets of observations constructed

from 39 representations of the design composition.

Ce

Mt
Ad

RnCe

Ad

Mr

Ce

Ad

Rn

Ce

Mt
Ad

RnCe

Mt
Ad

RnCe

Rs

Ad

Mr

Ce

Ad

Rs

Ce

Ad

Rn

Cs1(a)

*Cs2

*Cs3

*Cs4 Cs5
Cs6

Cs7

Cs8

Mr

Dm Mt

Mr

Rs

Mt

Reconstructed

Reinforced

Constructed

Chapter 7

SLiDe in Architectural Designing

This Chapter describes some ways in which SLiDe provides interactive support in
designing compositions of architectural shapes. SLiDe-CAAD is proposed to help in
enhancing the perceptual interaction with design elements in design composition; explore
the design space for various alternatives and to help maintain the integrity of shape
semantics of interest in the design composition. These could be achieved by the use of both
necessary and sufficient conditions (predetermined), and the applicability conditions,
situated and learned while designing. SLiDe-CAAD is introduced to offer a collaboration
between the designer and the computer during the process of designing and producing a
design artefact at the very early stages of designing.

7.1 Introduction

In architectural designing most of the current CAD systems can only be used at the late
stages of the design process after most of the major design decisions have been made;
and very few can be used during the conceptual stages of designing. During the process
of designing, design solutions are fluid and emergent entities generated by dynamic and
situated designing activities. Although designers have always managed with pencil,
paper and imagination, computers could help them in designing (Stiny, 1990a).
Designers work with descriptions involving drawings in many different ways. The
ability to provide useful designing support at the conceptual stages of designing to
accommodate the situated and fluid nature of early schematic designing and for design
solutions to emerge is important. This Chapter introduces some ways in which SLiDe
could be used to achieve this goal. Integrating SLiDe with current conventional CAD
systems (SLiDe-CAAD), within the domain of designing architectural shapes could
help with providing interactive computational support in designing at the early
conceptual stages. The aims of SLiDe-CAAD are to provide a medium for the designers
to explore the design space, to enhance the perceptual interaction with design elements
and to maintain the integrity of developed design concepts based on designers' interest.

Within the proposed view of providing interactive support in designing, it is not meant
to automate the design process but rather to help designers in designing. There are
various scenarios for controlling such interaction. Chase (2000) introduced various
possibilities of control strategies of the interaction between designer and computer that
vary from full control to either the designer or the computer. Partial or major control
could be assigned to one over the other. In this thesis, the role of the computer is to help

Chapter 7: Ways of using SLiDe in Architectural Designing 104

the designer in exploring different alternatives from which the designer may select a
new move to develop further. At the same time, using the Recogniser module of SLiDe
could provide CAD systems with the capability to recognise shape semantics in what
have been developed and bring that to the attention of the designer. The designer may
select one of the recognised shape semantics based on their interest. SLiDe-CAAD is
proposed to explore the design space in the view of the desired shape semantic. This
could help with enhancing the perceptual interaction with design elements in the design
composition.

7.2 Enhancing the Perceptual Interaction with the Design
Composition

During designing, designers usually develop their ideas in sketches. Design sketches are
not something given to the designers at the beginning of the task, but something which
designers dynamically produce from scratch during the design process (Suwa et al.,
1998a). SLiDe's input can be either a design sketch (linear shapes drawn manually), or a
drawing (linear shapes depicted in a conventional CAD system). Design sketches can be
converted to a vectorised version of the one produced using conventional CAD systems.
This process includes converting raster graphics to vector graphics. The initial data of
this process is an image. A scanned image in a raster graphics format such as GIF or
JPEG is transformed into the vector graphics format in DXF. In order to achieve this
vectorisation process the KVEC software is used to convert GIF to DXF
(http://ourworld.compuserve.com/homepages/kkuhl/). For instance, an image of a
design sketch is shown in Figure 7.1(a), and the result of the vectorisation process is
shown in Figure 7.1(b). The output image in vector graphics is processed to clear noise
and to identify edge segments so that the expected picture of the image is achieved as
shown in Figure 7.1(c).

(a) raster graphic scanned
image

(b) vectorised contour from
the image

(c) processed drawing
cleared of noise

Figure 7.1 Conversion of a design sketch to a vectorised version that can be handled by CAD
systems.

Visual perception requires the capacity to extract shape properties and relationships
among shape parts. SLiDe-CAAD could help with enhancing the perceptual interaction
between the designer and the design composition. SLiDe-CAAD can help in exploring
the design space and bringing designer's attention to a set of congruent shapes derivable

Chapter 7: Ways of using SLiDe in Architectural Designing 105

from their current design composition, by highlighting them and reflecting certain shape
semantics of interest to the designers. The proposed processes to achieve this goal are
indicated in Figure 7.2. The recognised shapes might attract a designer's attention to
pursue them further in designing. This implies leading designers to unintended moves.

Figure 7.2 A framework for enhancing the perceptual interaction with the design composition.

Recognise shape
semantics

Initial design sketch

Infinite maximal line
(IML) representation

“design space”

Designer’s
Input

SLiDe’s
Recogniser
Module

Designer’s
Selection Choose a shape

semantic of interest

SLiDe’s
Generator
Module

Explore the design
space for other shapes

within the view of
the shape semantic of

interest to the
designer

SLiDe-CAAD

Designer’s
Selection

Select a shape of
interest among the

intersections of IMLs

Various alternatives of
shapes in which the
shape semantic of

of interest is recognised
among them

SLiDe-
CAAD’s
Output

Chapter 7: Ways of using SLiDe in Architectural Designing 106

The initial design sketch (design composition), is converted into a drawing that can be
dealt with in conventional CAD systems as shown in Figure 7.3(a). The Recogniser
module of SLiDe can be used to detect shape semantics in the design composition. The
result of using the Recogniser module is shown in Figure 7.3(b) whereby a cyclic
rotation (Rn) is found. Designers may indicate their interest in one of the recognised
shape semantics found by the Recogniser module in their initial design composition.
SLiDe-CAAD could help in exploring the design space to find other shapes within
which the desired shape semantic is recognised. The design space of the initial design
composition is constructed using the Generator module to develop infinite maximal
lines of the initial design composition as shown in Figure 7.4(a). The design space can
be searched for other congruent shapes that satisfy the desired shape semantic. This
search is guided by both the shape semantic of interest to the designer and the selected
shape from amongst the intersections of infinite maximal lines as shown in Figure
7.4(b). The recognised congruent shapes in the view of cyclic rotation are highlighted in
shaded areas to be easily seen by the designer as shown in Figure 7.4(c).

Figure 7.3 (a) initial design composition; (b) the result of using the Recogniser module to detect
shape semantics in the initial design composition

Designers may continue using SLiDe-CAAD to explore the design space for other
shapes that satisfy shape semantics of interest to them, eg. cyclic rotation in relation to
other shapes. Figures 4.7(d), (e) and (f) show some examples of new congruent shapes
wherein cyclic rotation is recognised. This provides designers with rich alternatives
from which to choose in further pursuing in designing. As it can be seen from these
alternatives, the use of guided search in SLiDe-CAAD could help in making implicit
shapes in the initial design composition explicit and perceivable by the designers based
on their interest in relation to a certain shape semantic.

 (a) (b)

Chapter 7: Ways of using SLiDe in Architectural Designing 107

Figure 7.4 (a) the design space in the form of the intersections of infinite maximal lines of the
initial design composition within the frame drawn by the designer; (b) a selected shape by the
designer to be used in searching the design space for other congruent shapes that satisfy cyclic

rotation; (c) a group of congruent shapes among which cyclic rotation is recognised; (d), (e) and
(f) other examples of congruent shapes that satisfy the designer's interest in cyclic rotation.

 (a) (b)

 (c) (d)

(e) (f)

Chapter 7: Ways of using SLiDe in Architectural Designing 108

7.3 Exploring various alternatives in the design space

The use of multiple representations, provided by the Generator module in SLiDe, could
be useful for designers in conceptualising, exploring and perceiving their designs
differently. This helps in exploring the shapes in a design composition and enabling
designers to have a variety of representations of what has been designed which may
lead them to different discoveries from those they may otherwise have pursued. These
different representations of the same design composition help to focus the designer’s
attention on hidden features of their design elements. This is achieved through the use
of the Generator module in SLiDe as shown in Part I in Figure 7.5. The Generator
constructs the design space by developing infinite maximal lines of the initial design
composition. The designer selects a shape of interest from among the intersections of
the infinite maximal lines. The Generator searches the design space for congruent
shapes of the selected shape. The congruent shapes are highlighted by shading the
shapes and the Generator module develops a representation from the recognised
congruent shapes and the leftover of the initial design composition. Designers may
continue exploring the design space for other alternatives by selecting other shapes of
interest from among the intersections of infinite maximal lines and consequently the
Generator module develops a corresponding representation. Examples of some of the
alternate representations developed using the Generator module are shown in Figures
7.6 (a) to (f) showing the representations N1 to N6.

7.4 Maintaining the Integrity of Desired Design Concepts
while Designing

After a number of design alternatives have been generated in the exploration phase, the
designer may select one of the alternatives to pursue further. A designer might be
attracted to a specific design alternative for different reasons. One of these could be a
certain shape semantic. During the conceptual designing process, designers usually
revise the selected alternative by making changes while designing. There are two
classes of possible changes: addition and substitution (Gero, 1992a). In the context of
shape composition, the concept of addition is that shape parts are added to the existing
stock of shapes which are used to describe the design composition. On the other hand,
the concept of substitution is that some existing shapes in the design composition are
deleted and others are amended to produce different sets of possible design
compositions. It might be useful to provide designers with a tool that has the capability
to maintain consistency in shape semantics when changes are made to the concepts that
have attracted them in their designs at earlier stages. Maintaining the integrity of desired
and developed concepts while designing is another way in which SLiDe-CAAD could
provide support in architectural designing. A simplified approach to maintain the shape
semantic of interest in the design composition has been proposed by Gero and Jun
(1995b). The shape semantic that has been selected to be kept is constrained to exist
independently of other operations based on the sufficient and necessary conditions of
that shape semantic, ie situation independent. It is proposed here to maintain the desired
shape semantic by preserving both its necessary conditions (predetermined) and
situatedness (constructed). This would help not only to maintain the shape semantic of

Chapter 7: Ways of using SLiDe in Architectural Designing 109

interest but also its situation. Maintaining the situation within which the shape semantic
of interest was recognised helps with maintaining the integrity among shapes in the
design composition as a whole. This means that the desired shape semantic is
constrained by both necessary and applicability conditions. This is to be achieved
through maintaining the other shape semantics within which the shape semantic of
interest is situated as outlined in Part II, Figure 7.5.

Figure 7.5 Part I: Framework of exploring various alternatives in the design space and Part II:

Framework of maintaining the integrity of desired design concept, shape semantic of interest, by
preserving both of its necessary and applicability conditions.

Recognise shape
semantics (necessary
conditions) from each

representation

Initial design sketch

Infinite maximal line
(IML) representation

“design space”

Designer’s

Input

SliDe’s
Recogniser
Module

Designer’s
Selection

Choose one of the
representations

to pursue further
+

a shape semantic of
interest

SliDe’s
Generator
Module

Explore the design
space for other
representations

SLiDe-CAAD

Designer’s

Selection
Select a shape of

interest among the
intersections of IML’s

Multiple representations
of the initial design

sketch

SLiDe’s
Generator
Module

Learn the
applicability
conditions

(situatedness) of
recognised shape

semantics

SliDe’s
Incremental
Situator
Module

Designer Pursue designing with
the selected

representation

Maintain the integrity
of desired design
concepts (shape

semantics of interest)

SliDe-CAAD

Chapter 7: Ways of using SLiDe in Architectural Designing 110

Figure 7.6 Various alternatives from exploring the design space of the initial design
composition using the Generator module, from (a) to (f) show the representations N1 to N6.

In Figure 7.4, the Recogniser module of SLiDe can be used to detect shape semantics at
each developed representation generated while exploring the design space as shown in

(a): N1 (b): N2

(c): N3 (d): N4

(e): N5 (f): N6

Chapter 7: Ways of using SLiDe in Architectural Designing 111

Figure 7.6. The result of using the Recogniser module is a set of observations
constructed as shown in Table 7.1 from the developed representations. The Incremental
Situator module of SLiDe can be used to learn the situatedness of recognised shape
semantics across the observations constructed using the Recogniser module. The results
of using the Incremental Situator module are situational categories as shown in Figure
7.7. These situational categories are used to define the applicability conditions of
recognised shape semantics.

Table 7.1 A set of observations produced using the Recogniser module to detect shape
semantics in the developed representations shown in Figures 7.6.

Representation

No.

Corresponding Observation
(On)

N1 O1 Rn , Ad

N2 O2 Rn , Ad

N3 O3 Rn , Ce , Ad

N4 O4 Rn , Ce , Ad

N5 O5 Rn , Ad

N6 O6 Rn , Ad

Figure 7.7 The result of using the Incremental Situator module in SLiDe to learn the
applicability conditions of recognised shape semantics across the observations wherein two

situational categories Cs1 and Cs2 are learned.

Within each situational category, if a certain shape semantic were selected to be the
knowledge in focus the remaining shape semantics within this category form the
situatedness of that shape semantic. In Figure 7.7, there are two learned situational
categories: Cs1 and Cs2. In Cs1, there is regularity among the shape semantics Rn, Ce and

Cs1

Cs2

Chapter 7: Ways of using SLiDe in Architectural Designing 112

Ad that refer to cyclic rotation, centrality and adjacency respectively. Within Cs1, if
cyclic rotation (Rn) is selected to be the knowledge in focus, then both centrality (Ce)
and adjacency (Ad) are the applicability conditions of cyclic rotation. In other words,
cyclic rotation is situated within centrality and adjacency. In Cs2, there is another
situation wherein cyclic rotation is recognised in conjunction with adjacency.

The situatedness of shape semantics could be used to maintain shape semantics and the
integrity of the design composition while revising the design. SLiDe-CAAD could help
to dynamically change the association between the parts in a design composition based
upon the designers' selections of a shape semantic of interest by maintaining its
applicability conditions. The selected shape semantic of interest to the designer is
considered by SLiDe-CAAD as the knowledge in focus or a desired design concept. So,
whenever designers modify their designs, SLiDe-CAAD would automatically maintain
the integrity of their desired design concepts through maintaining the related shape
semantics that define the situation of the desired design concept.

7.4.1 Maintaining the integrity of design concepts in response to
addition of shapes

For instance, let us assume that the designer, after exploring the design space, using the
Generator module of SLiDe to develop some representations, selected one of the new
developed representations, eg. representation N3 as shown in Figure 7.6(c), as a new
move to further pursue in designing. This selected representation is now the current
design composition that the designer acts on as shown in Figure 7.8(a) wherein the
designer is interested in cyclic rotation (Rn) among the group of four shapes S1 in the
design composition. Some time later, the designer decided to add or insert a space, in
the form of a new shape S3, between the two shapes S1 and S2 in the design composition
as shown in Figure 7.8(b). Such addition required moving the shape S1 from its previous
location. Hence, the cyclic rotation (Rn) among the group of shapes S1 is disturbed by
moving one of the shapes S1 and changes its distance from the rotation centre of its
group. Yet, there is a possibility to maintain the cyclic rotation by moving the other
shapes S1 with the new distance from the rotation centre as shown in Figure 7.8(c).
Maintaining the distance between each of the congruent shapes S1 and the rotation
centre is one of the necessary and sufficient conditions of cyclic rotation. In spite of
maintaining the cyclic rotation in the design composition, the adjacency (Ad) between
each of the shapes S1 and S2 is disturbed. From the learned situational category (Cs1) in
SLiDe, adjacency (Ad) is one of the applicability conditions of cyclic rotation. Since,
cyclic rotation is the knowledge in focus, SLiDe-CAAD could help in maintaining the
situatedness of cyclic rotation via preserving all of its applicability conditions. As a
result, the shape S3 is inserted between each of the shapes S1 and S2 to maintain the
adjacency among them as shown in Figure 7.8(d) whereby adjacency is maintained in
one of its alternate forms from direct contact to a link between shapes. As can be seen
from this example, maintaining both the necessary (preconditions) and applicability
conditions (situatedness) provide a rich support to maintain the integrity in a design
composition as a whole. The necessary and sufficient conditions could be used to
maintain the shape semantics and the applicability conditions to maintain the
situatedness of shape semantics.

Chapter 7: Ways of using SLiDe in Architectural Designing 113

Figure 7.8 (a) A new move that a designer selected from the developed representations to
further pursue in designing, (b) a new space added by the designer at a later stage, (c) SLiDe-
CAAD could help in maintaining the integrity of cyclic rotation via preserving its necessary

conditions, and (d) SLiDe-CAAD could help in maintaining the situatedness of cyclic rotation
via preserving its applicability conditions, eg. adjacency and centrality.

S2

S3

S1

S1

S1

S1

S2

S3

S1

S1

S1

S1

S2

S3

S1

S1

S1

S1

S3
S3

S3

S1

S1

S1

S1

S2

(a) (b)

(c) (d)

Chapter 7: Ways of using SLiDe in Architectural Designing 114

7.4.2 Maintaining the integrity of design concepts in response to
substitution of shapes

The designer may amend any of the shapes in the design composition substituting an
existing shape as shown in Figure 7.9(a) whereby the new shape S4 substitutes the
existing shape S1. The substitution of the existing shape disturbs the cyclic rotation
since the shape S4 is not congruent to the shape S1 where congruency among shapes is
one of the necessary and sufficient conditions of cyclic rotation. SLiDe-CAAD could
help in maintaining the cyclic rotation by substituting each of the S1 shapes with S4 as
shown in Figure 7.9(b). In response to this change SLiDe-CADD will check out all the
learned applicability conditions of cyclic rotation: adjacency and centrality to maintain
its situatedness. In this example, neither adjacency nor centrality was disturbed.

Figure 7.9 (a) Substituting one of the existing shapes (S1) with a new shape (S4), (b)
maintaining the cyclic rotation via preserving the congruency among shapes and substituting

each of (S1) with (S4).

On the other hand, there are various kinds of change that the designer may endeavour to
achieve during designing. An example of such endeavour might be similar to the one
shown in Figure 7.10(a) whereby the designer decided to join two of the (S1) shapes
together with some modifications forming a new shape (S5) that substitutes them. With
such change, the cyclic rotation is not only disturbed but also violates the constraints
within which there is no possibility to maintain the necessary and sufficient conditions
of cyclic rotation within that design composition since the overlap among shapes is not
permitted. Nevertheless, there are some other possibilities in which SLiDe-CAAD could
help designers in such a case. One of these is giving the designer the possibility of
changing the shape semantic of interest. SLiDe-CAAD then examines the possibility of
accommodating the new shape semantic as the knowledge in focus within the design
composition by trying to satisfy both of its necessary and applicability conditions and if
it is successful highlights the results visually to the designer. For instance, Figure
7.10(b) shows the expected results of changing the knowledge in focus from cyclic
rotation to reflective symmetry and in Figure 7.10(c) to simple rotation. On the other

(a) (b)

S1

S2

S1

S1

S4

S4

S2

S4

S4

S4

Chapter 7: Ways of using SLiDe in Architectural Designing 115

hand, changing the shape semantic of interest could be fully automated in SLiDe-
CAAD to provide designers with the successful alternatives of changing the focus. The
automated selection process could be triggered by the violation of the constraints of the
existing shape semantic of interest. The evaluation of successful alternatives of
changing the focus is measured by the ability to satisfy both the necessary and
applicability conditions of the new shape semantic within that design composition.

Figure 7.10 (a) Joining and modifying two of the existing shapes (S1) to form a new shape
(S5), (b) and (c) the expected results of changing the shape semantic of interest from cyclic

rotation to reflective symmetry and simple rotations respectively.

S5

S2

S5

(a)

(b) (c)

S5

S2

S5

S5

S2

S5

S1

S2

S5

S1

Chapter 7: Ways of using SLiDe in Architectural Designing 116

7.5 Discussion

This Chapter outlined some features that SLiDe-CAAD could offer to conventional
CAD systems in enriching both interactivity and designing support in the preliminary
stages of designing. These features might help with enhancing the perceptual interaction
with design elements in the design composition; explore the design space for various
alternatives and maintain the integrity of shape semantics of interest in the design
composition and its situatedness. The purpose of SLiDe-CAAD is not to replace the
designer and automatically produce solutions to a shape problem that the designer has
formulated, but to collaborate with the designer in designing and producing a solution.
Considering the use of both necessary and applicability conditions to maintain the
design integrity adds a further dimension to parametric design; that is, the situatedness
of design knowledge. The main concern in parametric design is the imposition of
constrained relationships (semantics), on the shape of objects, which enables shape
manipulation by adjusting several geometrical attributes in some fixed relationship to
each other or in a relationship to explicit changes applied to other shapes, or to the
location of other objects (Kalay, 1989; Rossignac et al., 1989). Such constraints are
predetermined and the main concern is to maintain a certain semantic in the shape
regardless of its interdependency with other semantics. Such interdependency cannot be
predefined but rather learned based on the situation within which that shape semantic is
recognised. Furthermore, these interdependencies and relationships among shape
semantics are changing based on the observations constructed from the various
representations developed while designing. The Incremental Situator module in SLiDe
could be used to capture the effect of such a change in the situatedness of recognised
shape semantics. These features provide the potential to change the nature of passive
conventional CAD systems to be active and responsive CAAD support systems at the
very early stages of designing.

Chapter 8

Conclusion

This chapter summarises the research results of this thesis. The contributions of this
research and possible directions for future research are outlined.

This thesis has presented an approach to situated learning in designing based on the
notion that both learning and designing are situated and learning design knowledge in
relation to its situation is more useful than learning it independently of its locus and
application. The concept of situatedness acknowledges that where what is done and
when, matters. The approach of situated learning in designing is to focus on
constructing a conjunction between design knowledge and the situation within which it
was recognised. The situatedness of design knowledge is perceived as the applicability
conditions that have the potential to guide the use of design knowledge. In this thesis, a
computational system for situated learning in designing (SLiDe) was conceived,
developed and implemented within the domain of architectural shape semantics. SLiDe
is an acronym coined in this thesis. The situations within which shape semantics were
recognised from a set of observations in a design composition were organised into the
form of a hierarchical tree structure. These observations were constructed from a set of
multiple representations that were generated from a single design composition. The
multiple representations allowed for various kinds of shape semantics and relationships
among those shape semantics to be recognised. The situatedness of shape semantics was
constructed from the regularities of the relationships among shape semantics across the
observations within which those shape semantics were recognised. The constructed
situations and their hierarchical structure tree change in response to new observations.
SLiDe has the capability to learn and to refine the situatedness of shape semantics
incrementally. In this Conclusion contributions of this research are presented and
possible directions for future related research are suggested.

8.1 Objectives and Results

The aim of this thesis was to develop an approach to situated learning in designing in
which computers would have the capability to learn design knowledge including
concepts of the situatedness of design knowledge. Architectural shape semantics were
proposed to be the domain of applying situated learning in designing. Four main
objectives were proposed in order to achieve this aim: development of multiple
representations; learning of shape semantics in relation to their situations; development

Chapter 8: Conclusion 118

of a computational system of situated learning in designing (SLiDe); and exploration of
the application of SLiDe in architectural shape designing. Research results are
summarised in view of these objectives as follows.

(i) The objective of developing multiple representations from a single design
composition (floor plan), to serve as a platform for a situated learning system
in designing was achieved by developing an infinite maximal lines
representation of the initial shape of the design composition and developing
the Generator module that has the capability to be used with a designer's
interaction for generating various representations from a single design
composition.

(ii) The objective of learning shape semantics in relation to the situations within
which they were recognised was achieved by developing the Recogniser
module that is able to detect shape semantics from each developed
representation and construct a corresponding observation from each
representation. The Situator module learns shape semantics in relation to their
situations through learning the regularities of relationships among shape
semantics across the observations within which they were recognised.

(iii) The objective of developing a computational system for situated learning in
designing was achieved by developing SLiDe that has the capability to:
develop multiple representations; recognise shape semantics from each
developed representation; construct sets of observations from the developed
representations; learn the situatedness of recognised shape semantics; and
incrementally update what has been learned in response to new observations
using the Reconstructing Situator in the Incremental Situator module.

(iv) The objective of exploring ways of using SLiDe in architectural shape
designing was achieved by demonstrating some of SLiDe's capabilities
integrated with CAD systems within the architectural domain (SLiDe-
CAAD), to enhance the perceptual interaction with design elements to bring
designers’ attention to hidden visual features in their designs; explore the
design space for various alternatives; and maintain the integrity of shape
semantics of interest and their situatedness.

8.2 Contributions

The contributions of this thesis are:

• Multiple representations of a design composition - A design composition (shape
of a floor plan), was interpreted in various ways in which different shape
semantics and relationships among them could be recognised from the
representations. The use of multiple representations in designing allowed for the
transformations of a design between designing states. The use of infinite maximal
lines provided a rich repertoire within which multiple representations were
developed. The concept of using multiple representations to encounter various

Chapter 8: Discussion 119

states of situatedness was implemented. The development of multiple
representations achieved using the Generator module in SLiDe served as a
foundation upon which many kinds of inference were developed. At each
representation there were opportunities to recognise various shape semantics and
reinforce or decay their situations. A learning system may identify the
regularities of relationships among recognised shape semantics to learn within
which situations those shape semantics were recognised.

• Shape semantics recognition - The recognition of shape semantics is a kind of
appreciation of semantics in design compositions. Shape semantics are
recognised in terms of similarity of spatial relationships and physical properties.
The identification of shape congruency is an important constituent for
recognising some of the shape semantics. Building on the work of SPARS (Cha
and Gero, 1998), the Recogniser module developed in SLiDe helps with
endowing the computer with the ability to appreciate the shape semantics within
each developed representation through recognising various sets of shape
semantics. Three sets of shape semantics that are among the most prominent
semantics in architectural shape composition can be recognised using the
Recogniser module: expression; symmetry; and modality. Expression includes
dominance and adjacency; symmetry includes reflective symmetry around one
axis or around more than one axis, simple or cyclic rotation, translational
repetition and scaling; and modality includes centrality, radiality and linearity.
The Recogniser module has the capability to detect each representation against
these sets of shape semantics.

• Learning the situatedness of recognised shape semantics – The acquisition of
design knowledge is a capability constructed in action within the situation. This
leads to the notion of situatedness to provide the potential for guiding the use of
knowledge. The concept of situatedness is borrowed from situated cognition that
asserts “where you are when you do what you do matters”. Since it is not
possible in designing to know beforehand what knowledge to use in relation to
any situation, then there is a need to learn knowledge in relation to its situation
within which it was recognised. The Situator module developed in SLiDe has the
capability to learn the regularities of relationships among shape semantics across
the observations produced using the Recogniser module. The Situator module
clusters these regularities in the form of situational categories in a hierarchical
structure tree. The learned situational categories carry with them the applicability
conditions of recognised shape semantics. Within each learned category, if a
certain shape semantic were chosen to be the design knowledge in focus, the
remaining shape semantics within this category form the applicability conditions
of this shape semantic within which it was recognised across the observations.
The duality between knowledge in focus and its situation has been exploited.
This provided the opportunity to learn the mapping from one to many in which
there might exist a number of situations within which the design knowledge in
focus could be recognised. This enriches the relationships between design
knowledge and its states of situatedness.

Chapter 8: Conclusion 120

• Incremental learning of the situatedness of recognised shape semantics –
During the process of designing the relationships between knowledge and
situation are not treated as static, but are invariably subject to change. This is due
to the processes of restructuring and reinterpretation. Once the situations have
been constructed using the Situator module, they can be updated. The
incremental process of learning the situatedness of recognised shape semantics
involves: constructing new regularities of relationships among shape semantics;
reconstructing learned regularities to include new shape semantics that are
relevant to a learned situation; reinforcing learned regularities to empower what
has been learned; and decaying learned regularities to decline some of what has
been learned. The observations that SLiDe learns from might be constructed at
different points of time and usually not in order of their importance. Incremental
learning of the situatedness of shape semantics is achieved by developing the
Incremental Situator module in SLiDe in which the concept drift is considered to
almost eliminate the effect of the order of observations in the learned situational
categories. Incrementally updating the situatedness of what has been recognised
makes SLiDe sensitive to the new observations whenever they are constructed.

• The utility of SLiDe in architectural designing – Conventional CAD systems
can only be used at the late stages of designing when most of the conceptual
designing issues have been concluded. Integrating SLiDe with conventional CAD
systems in the domain of architectural shape composition (SLiDe-CAAD), could
help with providing interactive support in designing at the early stages. SLiDe-
CAAD could enhance the perceptual interaction with design composition in
which it can help in exploring the design space and bringing designers’ attention
to a set of congruent shapes derivable from their current design composition, by
highlighting them and reflecting certain shape semantics of interest to designers.
The use of multiple representations, provided by the Generator module in SLiDe,
could be useful for designers to conceptualise, explore and perceive their designs
differently. This helps to explore the shapes in a design composition and allows
designers to have a variety of representations of what has been designed in which
it may lead them to different discoveries from those they may otherwise have
pursued. The applicability conditions for each recognised shape semantic,
learned using the Incremental Situator module in SLiDe, could be facilitated to
maintain its situatedness in the design composition as well as the integrity of the
design composition as a whole while refining the design. SLiDe-CAAD could
help to dynamically change the association between the parts in a design
composition based upon the designers' selections of a shape semantic of interest
by maintaining its applicability conditions. The necessary and sufficient
conditions predefined in the Recogniser module could be used to maintain the
integrity of the shape semantic of interest in particular while refining the broader
design composition.

• Definition of future related research – The concepts developed and the results
achieved in this thesis led to the definition of future related research as outlined
in section 8.3.

Chapter 8: Discussion 121

8.3 Future Work

The computational system of situated learning in designing developed in this thesis is an
initial step to capture the situatedness of design knowledge while designing. The
concept of situatedness is not limited to what has been explored in this thesis. It is far
richer in its potential in which further concepts could be included within the
situatedness of design knowledge. More experience and additional research are required
to realise the ultimate goal of this research. This research can be extended in the
following directions.

8.3.1 Situated learning within the context of use while designing

The framework of situated learning in designing developed in this thesis can be
extended to construct the situatedness of design knowledge within the context of use
while designing. During the process of designing, a design solution is a fluid emergent
entity generated by dynamic activities in which design elements change over time
according to changes in the immediate context. The design solution is created by the
designer’s situated activities. So the situatedness of design knowledge could be
constructed in a computer-based interaction from a continuous stream of designer’s
actions. The benefit of learning the situatedness within the context of use over learning
the situatedness of design knowledge within which it was recognised (as it has been
developed in SLiDe) is that the situatedness of design knowledge could be learned as it
is encountered in action while designing. In designing, various transformations take
place during the development process of reaching a design solution. Hence, the context
changes when design transformations are applied to the initial design composition. So,
alternatively to develop a set of multiple representations of a design composition from
its infinite maximal lines representation to serve as a platform of SLiDe is to capture
each set of transformations in action while designing and learning or updating the
situatedness of design knowledge in response to them. Most importantly, is that a
mapping could be drawn between designers’ actions that led to certain transformations
and their consequences on the situatedness of design knowledge. The change in SLiDe’s
framework would be as shown in Figure 8.1. The sequence of procedures for changing
Slide’s framework is as follows.

(i) Use the Recogniser module to detect shape semantics from the initial design
composition and construct an observation.

(ii) Use the Situator module to learn the situatedness of recognised shape
semantics based on their relationships in the first observation. The Situator
module initialises its hierarchy to a single node basing the values of this
category’s attributes on the first observation

(iii) Observe designer’s actions and capture both designer’s actions and the current
design composition whenever transformations take place as a new
representation and use the Recogniser module to construct a corresponding
observation.

(iv) Use the Restructuring Situator module upon encountering a new observation
to update the initial hierarchy structure to accommodate the new observation
through either incorporating it in the previous category or creating a new
category.

Chapter 8: Conclusion 122

(v) Learn the relationships between designer’s actions and their effect on the
situatedness of recognised shape semantics.

Figure 8.1 An initial framework of SLiDe’s possible further development to learn within the
context of use while designing.

8.3.2 Considering the role of functional knowledge while learning the
situatedness

Designing includes transforming stated human needs into a design composition whose
functions are to satisfy the required needs (Rosenman and Gero, 1998). Essentially a
structural description of a design composition tells what it is, while a functional
description tells what it intended to accomplish. That is, functional descriptions specify
actions with effects that interest us (Mitchell, 1990). Another possible direction that is
rather intriguing is to consider the relationships of function, structure and behaviour
while constructing the situatedness of design knowledge. That is, learning the

Input
Initial design
composition

Designer’s
actions

Transformations

Recogniser

Recognise shape semantics from the current
design composition

Situator

Recognition

Learn the situatedness of recognised shape
semantics

Situatedness

Update the situatedness of recognised shape
semantics upon encountering a new

observation

Restructuring Situator

Construct an observation from the current
design composition

SLiDe

Designer’s Interaction Design Environment

Learn the relationships
between the designer’s

actions and the effect on
the change of situatedness

of recognised shape
semantics

Input
Transformed design

composition

Input
Transformed design

composition

Designer’s
actions

Transformations

Chapter 8: Discussion 123

situatedness of shape semantics recognised in an architectural shape composition is not
only according to what the shapes in a design composition look like, but also according
to their suitability. In a given situation, the effects of various actions performed by the
designer could be sorted to "useful" or "irrelevant" based on the effects of these actions
in satisfying the predefined functional requirements. The actions with useful effects
could be regarded as goal oriented and therefore be classified based on that. Such
classification is relative to a state of knowledge and a point of view. A claim that an
action is useful invites a question about the viewpoint of considering emergent
functions. Since in designing, neither the state space nor the goal state is fixed, then a
reasonable way to consider them is to evaluate the usefulness of actions based on both
explicit and emergent functions to consider possible uses that were not intended. Recent
cognitive studies of designers’ activities (Suwa et al., 1999) showed that designers were
able to find important aspects of a given problem and thereby invent design issues or
requirements during the process. They were able to invent design issues or requirements
through interaction with sketches, sometimes by using explicitly articulatable
knowledge, and sometimes by constructing justifiable reasons on the fly, while
designing.

8.3.3 Using SLiDe within an autonomous situated agent-based
designing system

An agent is a finite system with beliefs, goals and actions (Russell and Norvig, 1995).
An autonomous agent is an agent capable of reacting to and reasoning about events that
occur in its environment, executing actions in order to achieve goals in its environment
and communicating with other agents (Das et al., 1997). For an agent to do so, it needs
to construct its beliefs over time from its own experiences. This could be achieved by
comparing the effects of actions with resulting percepts. Cherniak (1986) introduced the
minimal conditions of an agent to be rational. An autonomous agent determines its
behaviour from its own experience. If the agent learns by interacting with the
environment, performs actions and receives percepts via its own sensors it will build not
only models which fit the agent’s perception of the environment but also build a model
in its own terms (Smith, 2000).

Thus, another direction for extending the research presented in this thesis would be to
facilitate SLiDe within a framework of an autonomous agent-based designing system.
SLiDe can be set within an agent-based designing system that interacts with an
environment which is itself a model of the evolving design viewed as an external
representation for the agent. Instead of the agent constructing elaborate internal world
models within which to learn (as developed in SLiDe), the proposed agent would
interact with the external representation imitating a designer. An initial framework is
shown in Figure 8.2. The proposed framework constitutes the environment and the
agent. The environment presents the external representation. The agent builds its view
about the environment through its sensors. The agent has containers for information,
called pools, and functions that process information and transfer it among pools. The
external representation (EXT) contains a representation of the agent’s environment. The
pools contain representations of the agent’s model. The sensors detect the environment,
perceive its representation and place their output in the percepts (PERC) pool.
Depending on the agent’s goal and focus of attention, the external representation in the

Chapter 8: Conclusion 124

EXT can be perceived in various ways. The perception function (P) determines what the
agent perceives. Hence, it decides what sensors should be used to construct the percepts
and place them in the (PERC) pool. The cognition function (C) provides a means of
additional cognitive inferences based on the percepts in the (PERC) and constructs the
current situation from its percepts and places its output in the situation pool (SIT). The
handling function (H), given the current situation and goal situatedness, prepares some
actions and places them in the actions pool (ACT). The action function (A) executes the
actions prepared by the handling function (H) causing some transformation in the
environment. In response to the new changes in the external representation the agent’s
sensors are activated and consequently the agent’s updated view of the environment is
constructed. Different views of the environment constructed by the agent allow for
manipulating existing objects to discover new objects and relationships which are
important activities in conceptual designing. The agent could discover such
relationships from its interpretations of perceptions of the external representations. The
agent’s interpretations would be altered in response to the effects of its actions on the
external representation. Since such an agent is assumed to useful in conceptual
designing where the designing task proceeds without having sufficient knowledge at the
outset to complete the design, then the agent needs not only to discover objects and
relationships but also to recognise useful patterns so as to facilitate progress in
designing.

 Figure 8.2 An initial framework of an autonomous agent-based designing system.

P C H A

Percepts Situations Actions

Environment Autonomous agent-based
Designing system

Functions

Pools

Perception Cognition Handling Action

External
Representation

of a design
composition

SLiDe

Sensors

PERC SIT ACT

EXT

References

Agre, P. and Horswill, I. (1997). Lifeworld analysis, Journal of Artificial Intelligence Research,
6: 111-145.

Agre, P. E. and Chapman, D. (1987). Pengi: An implementation of a theory of activity,
Proceedings of AAAI-87, Morgan Kaufmann, Seattle, WA, pp. 278-272.

Ainsworth, S. E., Wood, D. J. and Bibby, P. A. (1996). Co-ordinating multiple representations in
computer based learning environments, in Proceedings of the European Conference on
Artificial Intelligence and Education (EUROAI-ED), Lisbon.

Akin, Ö. (1986). Psychology of Architectural Design, Pion, London.

Akman, V. (1999). Situations and AI: Guest editor‘s introduction, Minds and Machines, 8(4):
475-477.

Akman, V. and Surav, M. (1995). Contexts, oracles, and relevance, AAAI-95 Fall Symp. on
Formalizing Context, Cambridge, Mass.

Akman, V. and Surav, M. (1996). Steps toward formalizing context, AI Magazine, 17(3): 55-72.

Archer, L. (1965). Systematic Method for Designers, Council of Industrial Design, London.

Arnheim, R. (1969). Visual Thinking, University of California Press, Berkeley.

Arnheim, R. (1977). The Dynamics of Architectural Form: Based on the 1975 Mary Duke
Biddle Lectures at the Cooper Union, University of California Press, Berkeley.

Asimov, M. (1962). Introduction to Design, Prentice-Hall, Englewood Cliffs, NJ.

Babin, A. and Loganantharaj, R. (1991). Designer's workbench: A tool to assist in the capture
and utilisation of design knowledge, in J. S. Gero (ed.), Artificial Intelligence in Design
'91, Butterworth Heinemann, Oxford, pp. 249-267.

Baglivo, J. A. and Graver, J. E. (1983). Incidence and Symmetry in Design and Architecture,
Cambridge University Press, Cambridge.

Baker, R. (1993). Designing the Future: The Computer in Architecture and Design, Thames
and Hudson, New York.

Balsam, P. D. (1985). The function of context in learning and performance, in P. D. Balsam and
A. Tomie (eds), Context and Learning, L. Erlbaum Associates, Hillsdale, NJ, pp. 1-21.

Bartlett, F. C. (1934). Remembering: A Study in Experimental and Social Psychology, The
University Press, Cambridge, England (reprinted 1967).

Bartlett, F. C. (1958). Thinking: An Experimental and Social Study, Allen and Unwin, London.

Barwise, J. and Perry, J. (1983). Situations and Attitudes, MIT Press, Cambridge, Mass.

Barwise, J. and Seligman, J. (1997). Information Flow: The Logic of Distributed Systems,
Cambridge University Press, Cambridge, UK.

Beer, R. (1990). Intelligence as Adaptive Behavior: An Experiment in Computational
Neuroethology, Academic Press, San Diego, CA.

Bereiter, C. (1997). Situated cognition and how to overcome it, in D. Kirshner and J. A. Whitson
(eds), Situated Cognition: Social, Semiotic, and Psychological Perspectives, L. Erlbaum,
Mahwah, N.J., pp. 281-300.

References 126

Beyer, D. M. (1998). From PuppyPaste to DogPaste: Toward a situated, learning analogy maker,
Master Thesis, Department of Philosophy, Binghamton University, Binghamton, NY.

Bhatta, S. R. and Geol, A. K. (1994). Discovery of physical principles from design experiences,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM),
8: 113-123.

Billett, S. (1996). Situated learning: Bridging sociocultural and cognitive theorising, Learning
and Instruction, 6(3): 263-280.

Britt, B. D. and Glagowski, T. (1996). Reconstructive derivational analogy: A machine learning
approach to automate design, Artificial Intelligence for Engineering Design, Analysis
and Manufacturing (AIEDAM), 10: 115-126.

Brown, D. C. and Birmingham, W. P. (1997). Understanding the nature of design, IEEE Expert,
12(2): 14-16.

Brown, J. S., Collins, A. and Duguid, P. (1989). Situated cognition and the culture of learning,
Educational Researcher, 18(1): 32-42.

Bruce, V., Green, P. R. and Georgeson, M. A. (1996). Visual Perception: Physiology,
Psychology, and Ecology, Psychology Press, Hove, East Sussex.

Carbonell, J. G. (1990). Machine Learning: Paradigms and Methods, MIT Press, Cambridge,
Mass.

Cha, M. Y. (1998). Architectural shape pattern representation and its implication for design
computing, Ph.D. Thesis, Key Centre of Design Computing, Department of Architectural
and Design Science, The University of Sydney, Sydney.

Cha, M. Y. and Gero, J. S. (1998). Shape pattern representation for design computation,
Working Paper, Key Centre of Design Computing and Cognition, The University of
Sydney, Sydney, Australia.

Chabot, R. and Brown, D. C. (1994). Knowledge compilation using constraint inheritance,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM),
8: 125-142.

Chase, S. (2000). User interaction in grammar based design systems: From interface analysis to
formal models, in Proceedings of Greenwich 2000: Digital Creativity Symposium,
Greenwich, England, pp. 61-70.

Chase, S. C. (1993). The use of multiple representations to facilitate design interpretation, in
Proceedings of ARECDAO '93, Barcelona, Spain, pp. 205-217.

Chase, S. C. (1997). Logic based design modeling with shape algebras, Automation in
Construction, 6(4): 311-322.

Cheeseman, P. and Stutz, J. (1996). Bayesian Classification (AutoClass): Theory and Results, in
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy (eds), Advances in
Knowledge Discovery and Data Mining, AAAI Press, Menlo park, Calif, pp. 61-83.

Cherniak, C. (1986). Minimal Rationality, MIT Press, Cambridge, Mass.

Clancey, W. J. (1991). Situated cognition: Stepping out of representational flatland, AI
Communications-The European Journal on Artificial Intelligence, 4(2/3): 109-112.

Clancey, W. J. (1993). Situated action: A neuropsychological interpretation response to Vera and
Simon, Cognitive Science, 17: 87-116.

References 127

Clancey, W. J. (1997a). The conceptual nature of knowledge, situations, and activity, in P.
Feltovich, R. Hoffman and K. Ford. (eds), Human and Machine Expertise in Context,
The AAAI Press, Menlo Park, CA, pp. 247–291.

Clancey, W. J. (1997b). Situated Cognition: On Human Knowledge and Computer
Representations, Cambridge University Press, Cambridge, UK.

Clancey, W. J. (1998). Interactive coordination processes: How the brain accomplishes what we
take for granted in computer languages, in Z. Pylyshyn (ed.), Constraining Cognitive
Theories: Issues and Options, Ablex Publishing Corporation, Greenwich, pp. 165-190.

Clark, R. H. and Pause, M. (1996). Precedents in Architecture, Van Nostrand Reinhold, New
York.

Coyne, R. D. and Gero, J. S. (1985). Design knowledge and context, Environment and Planning
B: Planning and Design, 12: 419-442.

Coyne, R. D., Rosenman, M. A., Radford, A. D., Balachandran, M. and Gero, J. S. (1990).
Knowledge-Based Design Systems, Addison-Wesley, Reading, Mass.

Cross, N. (1999). Natural intelligence in design, Design Studies, 20: 25-39.

Cross, N., Christiaans, H. and Dorst, K. (1996). Analysing Design Activity, Wiley, Chichester ;
New York.

Damski, J. (1996). Logic representation of shapes, PhD Thesis, Department of Architectural and
Design Science, The University of Sydney, Sydney, Australia.

Damski, J. and Gero, J. S. (1994a). A model of shape emergence based on human perception, in
Information Technology in Design, Vol. 2, ICSTI, Moscow, pp. 96-105.

Damski, J. and Gero, J. S. (1994b). Visual reasoning as visual re-interpretation through re-
representation, in AID'94 Workshop on Reasoning with Shapes in Design, Lausanne, pp.
16-20.

Das, S. K., Fox, J., Elsdon, D. and Hammond, P. (1997). A flexible architecture for autonomous
agents, Journal of Experimental & Theoretical Artificial Intelligence, 9(4): 407-440.

Dasgupta, S. (1989). The structure of design process, Advances in Computers, 28: 1-67.

Davis, R., Shrobe, H. and Szolovits, P. (1993). What is knowledge representation?, AI
Magazine, 14(1): 17-33.

Dewey, J. (1939). Logic: The Theory of Inquiry, reprinted in 1982, Irvington, New York.

Do, E. Y.-L. (1998). The right tool at the right direction: Investigation of freehand drawings as
an interface to knowledge based design tools, Ph.D. Thesis, College of Architecture,
Georgia Institute of Technology, Atlanta, Georgia.

Dorst, K. and Dijkhuis, J. (1996). Comparing paradigms for describing design activity, in N.
Cross, H. Christiaans and K. Dorst (eds), Analysing Design Activity, Wiley, Chichester,
pp. 253-250.

Duffy, A. and Duffy, S. (1996a). Learning and design reuse, Artificial Intelligence for
Engineering Design, Analysis and Manufacturing (AIEDAM), 10(2): 139-142.

Duffy, A. H. B. (1997). The "What" and "How" of learning in design, IEEE Expert, 12(3): 71-
76.

Duffy, A. H. B. and Kerr, S. M. (1993). Customised perspectives of past design from automated
group rationalisations, Artificial Intelligence in Engineering, 8(3): 183-200.

References 128

Duffy, A. H. B., Persidis, A. and MacCallum, K. J. (1995). NODES: A numerical and object
based modelling system for conceptual engineering design, Knowledge Based Systems, 9:
183-206.

Duffy, S. M. and Duffy, A. H. B. (1996b). Sharing the Learning Activity using Intelligent CAD,
Artificial Intelligence for Engineering Design, Analysis and Manufacture (AI EDAM),
10(2): 83-100.

Engestrom, Y. and Cole, M. (1997). Situated cognition in search of an agenda, in D. Kirshner
and J. A. Whitson (eds), Situated Cognition: Social, Semiotic, and Psychological
Perspectives, L. Erlbaum, Mahwah, N.J., pp. 301-309.

Errico, B. and Aiello, L. C. (1996). Intelligent agents in the situation calculus: An application to
user modelling, in D. M. Gabbay and H. J. Ohlbach (eds), Practical Reasoning:
International Conference of Formal and Applied Practical Reasoning (FAPR'96),
Springer, Berlin, pp. 126-140.

Fisher, D., Xu, L., Carnes, J. R., Reich, Y., Fenves, S. J., Chen, J., Shiavi, R., Biswas, G. and
Weinberg, J. (1993). Applying AI clustering to engineering tasks, IEEE Expert, 8(6): 51-
60.

Fisher, D. H. (1987). Knowledge acquisition via incremental conceptual clustering, Machine
Learning, 2: 130-172.

Fisher, D. H. and Schlimmer, J. C. (1988). Models of Incremental Concept Learning, Technical
Report 88-05, Department of Computer Science, Vanderbilt University, Nashville, TN.

Galle, P. (1999). Design as intentional action: A conceptual analysis, Design Studies, 20: 57-81.

Gedenryd, H. (1998). How designers work, Ph.D Thesis, Cognitive Science, Lund University,
Lund, Sweden.

Gee, J. P. (1997). Thinking, learning and reading: The situated sociocultural mind, in D. Kirshner
and J. A. Whitson (eds), Situated Cognition: Social, Semiotic, and Psychological
Perspectives, L. Erlbaum, Mahwah, NJ, pp. 235-259.

Gennari, J. H., Langley, P. and Fisher, D. (1989). Models of incremental concept formation,
Artificial Intelligence, 40: 11-61.

Gero, J. S. (1990). Design prototypes: A knowledge representation schema for design, AI
Magazine, 11(4): 26-36.

Gero, J. S. (1992a). Creativity, emergence and evolution in design, in J. S. Gero and F. Sudweeks
(eds), Preprints Computational Models of Creative Design, Department of Architectural
and Design Science, University of Sydney, pp. 1-28.

Gero, J. S. (1992b). Shape emergence and symbolic reasoning using infinite maximal lines,
Unpublished Notes, Design Computing Unit, Department of Architectural and Design
Science, The University of Sydney, Sydney.

Gero, J. S. (1994). Towards a model of exploration in computer-aided design, in J. S. Gero and
E. Tyugu (eds), Formal Design Methods for CAD, North Holland, Amsterdam, pp. 315-
336.

Gero, J. S. (1996). Design tools that learn: A possible CAD future, in B. Kumar (ed.),
Information Processing in Civil and Structural Design, Civil-Comp Press, Edinburgh,
pp. 17-22.

References 129

Gero, J. S. (1998a). Conceptual designing as a sequence of situated acts, in I. Smith (ed.),
Artificial Intelligence in Structural Engineering, Springer, Berlin, pp. 165-177.

Gero, J. S. (1998b). Situated learning in design, in A. Duffy (ed.), AID’98 Workshop on
Machine Learning in Design, Lisbon, pp. 1-5.

Gero, J. S. (1999). A model of designing that includes its situatedness, in J. Gu and Z. Wei (eds),
CAADRIA'99, Shanghai Scientific and Technological Literature Publishing House,
Shanghai, China, pp. 235-242.

Gero, J. S., Damski, J. and Jun, H. (1995). Emergence in CAAD systems, in M. Tan and R. Teh
(eds), The Global Design Studio: Proceedings of the Sixth International Conference on
Computer-aided Architectural Design Futures, CAAD Futures '95, Centre for Advanced
Studies in Architecture, National University of Singapore, Singapore, pp. 423-438.

Gero, J. S. and Fujii, H. (1999). A computational framework for concept formation for a situated
design agent, Working Paper, Key Centre of Design Computing and Cognition, The
University of Sydney, Sydney, Australia.

Gero, J. S. and Jun, H. (1995a). Getting computers to read the architectural semantics of
drawings, in L. Kalisperis and B. Kolarevic (eds), Computing in Design: Enabling,
Capturing and Sharing Ideas, ACADIA, pp. 97-112.

Gero, J. S. and Jun, H. (1995b). Visual semantic emergence to support creative design: A
computational view, in J. S. Gero, M. L. Maher and F. Sudweeks (eds), Preprints
Computational Models of Creative Design, University of Sydney, Sydney, Australia, pp.
87-117.

Gero, J. S. and Yan, M. (1993). Discovering emergent shapes using a data-driven symbolic
model, in U. Flemming and S. V. Wyk (eds), CAAD Futures'93, Elsevier, Amsterdam, pp.
3-17.

Gero, J. S. and Yan, M. (1994). Shape emergence using symbolic reasoning, Environment and
Planning B: Planning and Design, 21: 191-218.

Gluck, M. and Corter, J. (1985). Information, uncertainty and the utility categories, Proceedings
of the Seventh Annual Conference of the Cognitive Science Society, Lawrence Erlbaum
Associates, Irvine, CA, pp. 283-287.

Goel, V. (1995). Sketches of Thought, MIT Press, Cambridge, Mass.

Goldschmidt, G. (1991). The dialectics of sketching, Design Studies, 4: 123-143.

Goldschmidt, G. (1994). On visual design thinking: the vis kids of architecture, Design Studies,
15(2): 158-174.

Goldschmidt, G. (1997). Capturing indeterminism: Representation in the design problem space,
Design Studies, 18: 441-445.

Grecu, D. L. and Brown, D. C. (1996). Dimensions of learning in agent-based design, in 4th
International Conference on AI in Design - Workshop on Machine Learning in Design,
Stanford, CA, .

Grecu, D. L. and Brown, D. C. (1998). Guiding agent learning in design, in S. Finger, T.
Tomiyama and M. Mantyla (eds), Proc. of the 3rd IFIP Working Group 5.2 Workshop on
Knowledge Intensive CAD, Tokyo, Japan, pp. 237-250.

Greeno, J. G. (1989). Situations, mental models, and generative knowledge, in D. Klahr and K.
Kotosvky (eds), Complex Information Processing: The Impact of Herbert A. Simon,
Lawrence Erlbaum, Hillsdale, New Jersey, pp. 285-318.

References 130

Greeno, J. G. (1995). Understanding concepts in activity, in C. A. Weaver, S. Mannes and C. R.
Fletcher (eds), Discourse Comprehension: Essays in Honor of Walter Kintsch, Lawrence
Erlbaum, Hillsdale, New Jersey, pp. 65-95.

Heidegger, M. (1927). Being and Time (translation, 1962), Harper & Row, New York.

Hert, C. A. (1997). Information retrieval as situated action, Working Paper, School of Library
and Information Science, Indiana University, Bloomington, IN.

Hofmann, H. F., Pfeifer, R. and Vinkhuyzen, E. (1993). Situated software design, in
Proceedings of the Fifth International Conference on Software Engineering and
Knowledge Engineering, San Francisco, .

Huhns, M. N. and Acosta, R. D. (1992). An analogical reasoning system for solving design
problems, in C. Tong and D. Sriram (eds), Artificial Intelligence in Engineering Design,
Vol. 2, Academic Press, New York, pp. 105-143.

Iba, W. and Langley, P. (1999). Unsupervised learning of probabilistic concept hierarchies,
Unpublished Manuscript, Institute for the Study of Learning and Expertise, Palo Alto,
CA.

Ivezic, N. and Garrett, J. H. (1994). A neural network-based machine learning approach for
supporting synthesis, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 8: 143-161.

Jones, J. (1963). A method of systematic design, in Jones. J. and Thornley, D. (eds), Conference
on Design Methods, Pergaman, Oxford, pp. 10-31; reprinted in 1984, in N. Cross (eds),
Developments in Design Methodology, John Wiley, New York, pp. 9-31.

Jun, H. and Gero, J. S. (1998). Emergence of shape semantics of architectural shapes,
Environment and Planning B: Planning and Design, 25(4): 577-600.

Jun, H. J. (1997). Emergence of shape semantics of architectural drawings in CAAD systems,
Ph.D. Thesis, Department of Architectural and Design Science, University of Sydney,
Sydney.

Kalay, Y. E. (1989). Modeling Objects and Environments, Wiley, New York.

Karmiloff-Smith, A. (1993). Constraints on representational change: Evidence from children's
drawing, Cognition, 34: 57-83.

Kerr, S. (1993). Customised viewpoint support for the utilisation of experiential knowledge in
design, Ph.D. Thesis, CAD Centre, Department of Design, Manufacturer and Engineering
Management, University of Strathclyde, Glasgow, UK.

Kilander, F. and Jansson, C. G. (1993). COBBIT - A control procedure for COBWEB in the
presence of concept drift, in Proceedings of the 1993 European Conference on Machine
Learning, Springer-Verlag, Vienna, pp. 244-261.

Kirsh, D. (1995). The intelligent use of a space, Artificial Intelligence, 73: 31-68.

Kirshner, D. and Whitson, J. A. (1997). Situated Cognition: Social, Semiotic, and
Psychological Perspectives, L. Erlbaum, Mahwah, NJ.

Kocabas, S. (1991). A review of learning, The Knowledge Engineering Review, 6(3): 195-222.

Köhler, W. (1970). Gestalt Psychology: An Introduction to New Concepts in Modern
Psychology, Liveright, New York.

References 131

Kolarevic, B. (1997). Regulating lines and geometric relations as a framework for exploring
shape, dimension and geometric organization in design, in R. Junge (ed.), CAAD Futures
1997, Kluwer, Dordrecht, pp. 163-170.

Kolodner, J. L. (1993). Case-Based Reasoning, Morgan Kaufmann , San Mateo, CA.

Koutamanis, A. and Mitossi, V. (1993). Computer vision in architectural design, Design Studies,
14(1): 40-57.

Landau, B. (1996). Multiple geometric representations of objects in languages and language
learners, in P. Bloom (eds), Language and Space, MIT Press, Cambridge, Mass, pp. 317-
363.

Langley, P. (1996). Elements of Machine Learning, Morgan Kaufmann, San Francisco.

Langley, P. (1999). Concrete and abstract models of category learning, in Proceedings of the
Twenty-First Annual Conference of the Cognitive Science Society, Lawrence Erlbaum,
Vancouver, BC, pp. 288-293.

Lave, J. (1988). Cognition in Practice: Mind, Mathematics, and Culture in Everyday Life,
Cambridge University Press, Cambridge, UK.

Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation,
Cambridge University Press, Cambridge, England.

Lawson, B. (1980). How Designers Think, Architectural Press, London, UK.

Lenz, M. (1998). Case-Based Reasoning Technology: From Foundations to Applications,
Springer, Berlin.

Li, H. (1994). Machine Learning of Design Concepts, Computational Mechanics, Southampton,
UK.

Liu, T.-T. (1995). Some phenomena of seeing shapes in design, Design Studies, 16(3): 367-385.

Logan, B. and Smithers, T. (1993). Creativity and design as exploration, in J. Gero and M.
Maher (eds), Modelling Creativity and Knowledge-Based Creative Design, Lawrence
Erlbaum Associates, Hillsdale, NJ, pp. 139-175.

Lueg, C. (1997). An adaptive USENET interface supporting situated actions, Proceedings of the
3rd ERCIM Workshop on User Interfaces for All, Strasbourg, France, pp. 165-170.

Lueg, C. and Pfeifer, R. (1997). Cognition, situatedness, and situated design, Proceedings of the
Second International Conference on Cognitive Technology (CT 97), Aizu, Japan, pp.
124-135.

Lueg, C. P. (1999). Supporting situated information seeking: Communication, interaction and
collaboration, Ph.D. Thesis, Department of Information Technology, University of Zurich,
Zurich, Switzerland.

MacCallum, K. J., Duffy, A. H. B. and Green, S. (1987). An intelligent concept design assistant,
in H. Yoshikawa and E. A. Warman (eds), Design Theory for CAD, IFIP W.G 5.2
Workshop 3 on Intelligent CAD, Elsevier Science, North-Holland, pp. 301-317.

Mackellar, B. and Peckham, J. (1992). Representing design objects in SORAC, in J. S. Gero and
F. Sudweeks (eds), Artificial Intelligence in Design '92, Kluwer Academic Publishers,
Dordrecht, pp. 201-219.

Maes, P. (1990). Situated agents can have goals, Robotics and Autonomous Systems, 6: 49-70.

Maher, M. L., Balachandran, M. and Zhang, D. M. (1995). Case-Based Reasoning in Design,
Lawrence Erlbaum Associates, Mahwah, NJ.

References 132

March, L. and Steadman, P. (1971). The Geometry of Environment: An Introduction to Spatial
Organization in Design, RIBA Pubs., London, UK.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information, W. H. Freeman, San Francisco.

Matwin, S. and Kubat, M. (1996). The role of context in concept learning, in ICML-96
Workshop on Learning in Context-Sensitive Domains, at the 13th International
Conference on Machine Learning, Bari, Italy, .

McLaughlin, S. and Gero, J. S. (1987). Acquiring expert knowledge from characterized design,
Artificial Intelligence for Engineering Design, Analysis and Manufacture (AI EDAM),
1(2): 73-87.

Meiss, P. v. (1991). Elements of Architecture: From Form to Place, Van Nostrand Reinhold,
London, UK.

Michalski, R. S. and Stepp, R. (1983). Learning from observation: Conceptual clustering, in R.
S. Michalski, J. Carbonell and T. Mitchell (eds), Machine Learning: An Artificial
Intelligence Approach, TIOGA Publishing Co., Palo Alto, CA, pp. 331-363.

Mills, C. W. (1940). Situated actions and vocabularies of motive, American Sociological
Review, 5: 904-913.

Mitchell, T. M. (1982). Generalisation as search, Artificial Intelligence, 18: 203-226.

Mitchell, T. M. (1997). Machine Learning, McGraw-Hill, New York.

Mitchell, W. J. (1990). The Logic of Architecture: Design, Computation, and Cognition, MIT
Press, Cambridge, Mass.

Mitchell, W. J. and McCullough, M. (1995). Digital Design Media, Van Nostrand Reinhold,
New York.

Morrison, C. T. (1998). Situated representation: Solving the handcoding problem with emergent
structured representation, Ph.D. Thesis, Department of Philosophy, Binghamton
University, New York.

Mostow, J. (1989). Design by derivational analogy: Issues in the automated replay of design
plans, Artificial Intelligence, 40: 119-184.

Mostow, J., Barely, M. and Weinrich, T. (1992). Automated reuse of design plans in BOGART,
in C. Tong and D. Sriram (eds), Artificial Intelligence in Engineering Design, Vol. 2,
Academic Press, Boston, pp. 57-104.

Müller, J.-P. and Pecchiari, P. (1996). A model for systems of situated autonomous agents: An
application to automated deduction, ICMAS'96, Kyoto, Japan.

Müller, M. and Pfeifer, R. (1997). Developing effective computer systems supporting knowledge
intensive work: Situated design in a large paper mill, in M. Khosrowpour and J. Liebowitz
(eds), Cases on Information Technology Management in Modern Organization, Idea
Group Publishing, Hershey, PA, pp. 225-249.

Murdoch, T. and Ball, N. (1996). Machine learning in configuration design, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), 10: 101-
113.

Nardi, B. A. (1996). Studying context: A comparison of activity, theory, situated action models
and distributed cognition, in B. A. Nardi (ed.), Context and Consciousness: Activity
Theory and Human-Computer Interaction, MIT Press, Cambridge, Mass, pp. 69-102.

References 133

Newell, A. (1982). The knowledge level, Artificial Intelligence, 18(1): 87-127.

Nguyen, G. T. and Rieu, D. (1991). Representing design objects, in J.S. Gero (ed.), Artificial
Intelligence in Design ’91, Butterworth Heinemann, Oxford, pp. 367-386.

Nicolas Lachiche and Marquis, P. (1998). Scope classification: An instance-based learning
algorithm with a rule-based characterisation, in C. Nédellec and C. Rouveirol (eds), Machine
Learning: ECML-98, 10th European Conference on Machine Learning, Lecture Notes in
Computer Science, Vol. 1398, Springer, Berlin, pp. 268-279.

Oehlmann, R., Edwards, P. and Sleeman, D. (1995). Self-questioning and experimentation: an
index vocabulary of situated interaction, in I. Watson (ed.), Progress in Cased -Based
Reasoning, Springer-Verlag, Berlin, pp. 59-72.

Ores, B. V. (1998). From context to contextualising, Learning and Instruction, 8(6): 473-488.

Oxman, R. (1997). Design by re-representation: A model of visual reasoning in design, Design
Studies, 18: 329-347.

Oxman, R. M. (1995). The reflective eye: Visual reasoning in design, in A. Koutamanis, H.
Timmerman and I. Vermeulen (eds), Visual Data Bases in Architecture, Averbury,
Aldershot, UK, pp. 89-112.

Persidis, A. and Duffy, A. (1991). Learning in engineering design, in H. Yoshikawa, F. Arbab
and T. Tomiyama (eds), Intelligent CAD III, Elsevier Science Publishers, Amsterdam,
pp. 251-272.

Pfeifer, R. and Rademarkers, P. (1991). Situated adaptive design: Towards a methodology for
knowledge systems development, Proceeding of the Conference on Distributed Artificial
Intelligence and Cooperative Work, Springer-Verlag, Berlin, pp. 53-64.

Presidis, A. and Duffy, A. (1991). Learning in engineering design, in H. Yoshikawa, F. Arbab
and T. Tomiyama (eds), Intelligent CAD III, Elsevier Science, pp. 251-272.

Purcell, T. and Gero, J. S. (1998). Drawings and the design process, Design Studies, 19: 389-
430.

Quinlan, J. R. (1986). Induction of decision trees, Machine Learning, 1: 81-106.

Rademakers, P. and Pfeifer, R. (1992). The role of knowledge level in situated design, AI Memo
'92, Artificial Intelligence Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.

Radvansky, G. A. and Zacks, R. T. (1997). The retrieval of situation-specific information, in M.
A. Conway (eds), Cognitive Models of Memory, The MIT Press, Cambridge, Mass., pp.
173-213.

Rappaport, A. T. (1998). Constructive cognition in a situated background, International Journal
of Human Computer Studies, 49(6): 927-933.

Reich, Y. (1991). Constructive induction by incremental concept formation, in Y. A. Fledman
and A. Bruckstein (eds), Artificial Intelligence and Computer Vision, Elsevier Science
Publishers, Amsterdam, pp. 191-204.

Reich, Y. (1993). The development of BRIDGER: A methodological study to research in the use
of machine learning in design, Artificial Intelligence in Engineering, 8(3): 165-181.

Reich, Y. (1994). Towards practical machine learning techniques, in Proceedings of the First
Congress on Computing in Civil Engineering (Washington, DC), ASCE, New York, NY,
pp. 885-892.

References 134

Reich, Y. (1997). Machine learning techniques for civil engineering problems, Microcomputers
in Civil Engineering, 12(4): 295-310.

Reich, Y. (1998). Learning in design: From characterizing dimensions to working systems,
Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AI EDAM),
12(2): 161-172.

Reich, Y. and Fenves, S. J. (1992). Inductive learning of synthesis knowledge, International
Journal of Expert Systems: Research and Applications, 5(4): 275-297.

Reich, Y., Konda, S., Levy, S. N., Monarch, I. and Subrahmanian, E. (1993). New roles for
machine learning in design, Artificial Intelligence in Engineering, 8(3): 165-181.

Rendell, L. (1988). Learning hard concepts through constructive induction: Framework and
rationale, Technical Report UIUUCDCS-R-88-1426, Department of Computer Science,
University of Illinois as Urbana-Champagin, Urbana.

Robbins, E. and Cullinan, E. (1994). Why Architects Draw, MIT Press, Cambridge, Mass.

Rosenman, M. A. and Gero, J. S. (1998). Purpose and function in design, Design Studies, 19(2):
161-186.

Rosenschein, S. J. and Kaelbling, L. P. (1995). A situated view of representation and control,
Artificial Intelligence, 73(1-2): 149-173.

Rossignac, J. R., Borrel, P. and Nackman, L. (1989). Interactive design with sequences of
parameterised transformations, in V. Akman, P. J. Hagen and P. J. Veerkamp (eds),
Intelligent CAD Systems II: Implementational Issues, Springer-Verlag, Berlin, pp. 92-
125.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Prentice-Hall,
Upper Saddle River, NJ.

Schlimmer, J. C. and Granger, R. H. (1986). Beyond incremental processing: Tracking concept
drift, in Proceedings of AAAI-86, Mrgan Kaufmann, Philadelphia, PA, pp. 502-507.

Schön, D. A. (1983). The Reflective Practitioner: How Professionals Think in Action, Basic
Books, New York.

Schön, D. A. (1987). Educating the Reflective Practitioner, Jossey-Bass, San Francisco.

Schön, D. A. and Wiggins, G. (1992). Kinds of seeing and their functions in designing, Design
Studies, 13(2): 135-156.

Sim, S. K. and Duffy, A. H. B. (1998). A foundation for machine learning in design, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), 12(2):
193-209.

Simon, H. A. (1996). The Sciences of the Artificial, MIT Press, Cambridge, Mass.

Smith, B. (1999). Situatedness/embeddedness, in F. C. Keil and R. A. Wilson (eds), The MIT
Encyclopedia of the Cognitive Sciences, MIT Press, Cambridge, Mass, .

Smith, G. (2000). An argument for external representations in conceptual design, Unpublished
Report, Key Centre of Design Computing and Cognition, The University of Sydney,
Sydney, Australia.

Smithers, T., Tang, M., P., R. and Tomes, N. (1993). Supporting drug design using an
incremental learning approach, Artificial Intelligence in Engineering, 8(3): 201-216.

Solso, R. L. (1997). Cognition and the Visual Arts, MIT Press, Cambridge, Mass.

References 135

Sooriamurthi, R. and Leake, D. (1994). Towards situated explanation, in Proceedings of the
12th National conference on Artificial Intelligence, AAAI Press, Cambridge, MA, pp.
1492.

Soufi, B. and Edmonds, E. (1996). The cognitive basis of emergence: Implications for design
support, Design Studies, 17: 451-463.

Stahl, G. (1993). Supporting situated interpretation, Proceedings of the Cognitive Science
Society: A Multidisciplinary Conference on Cognition, Boulder, pp. 965-970.

Stiny, G. (1980). Introduction to shape and shape grammars, Environment and Planning B:
Planning and Design, 7: 343-351.

Stiny, G. (1990a). What designers do that computers should, in W. J. Mitchell, M. McCullough
and P. Purcell (eds), The Electronic Design Studio: Architectural Knowledge and Media
in the Computer Era, MIT Press, Cambridge, Mass, pp. 17-30.

Stiny, G. (1990b). What is a design?, Environment and Planning B: Planning and Design, 17:
97-103.

Streibel, M. J. (1995). Instructional plans and situated learning, in G. J. Anglin (ed.),
Instructional Technology: Past, Present, and Future, Libraries Unlimited, Englewood,
Colo., pp. 145-160.

Suchman, L. A. (1987). Plans and Situated Actions: The Problem of Human-Machine
Communication, Cambridge University Press, Cambridge, UK.

Sun, D. (1993). Memory, design and the role of computers, Environment and Planning B:
Planning and Design, 20: 125-143.

Suwa, M., Gero, J. S. and Purcell, T. (1998a). The roles of sketches in early conceptual design
processes, in Proceedings of Twentieth Annual Meeting of the Cognitive Science Society,
Lawrence Erlbaum, Hillsdale, New Jersey, pp. 1043-1048.

Suwa, M., Purcell, T. and Gero, J. S. (1998b). Macroscopic analysis of design processes based
on a scheme for coding designers' cognitive actions, Design Studies, 19(4): 455-483.

Suwa, M., Gero, J. S. and Purcell, T. (1999). Unexpected discoveries and s-inventions of design
requirements: A key to creative designs, in J. S. Gero and M. L. Maher (eds),
Computational Models of Creative Design IV, Key Centre of Design Computing and
Cognition, University of Sydney, Sydney, Australia, pp. 297-320.

Tan, M. (1990). Saying what it is by what it is like: Describing shapes using line relationships, in
W. J. Mitchell, M. McCullough and P. Purcell (eds), The Electronic Design Studio:
Architectural Knowledge and Media in the Computer Era, MIT Press, Cambridge, Mass,
pp. 201-213.

Thelen, E. and Smith, L. B. (1994). A Dynamics Systems Approach to the Development of
Cognition and Action, MIT Press, Cambridge, Mass.

Tong, C. (1992). Using exploratory design to cope with design problems complexity, in C. Tong
and D. Sriram (eds), Artificial Intelligence in Engineering Design, Vol. 2, Academic
Press, New York, pp. 287-332.

Turney, P. (1996). The identification of context-sensitive features: A formal definition of context
for concept learning, in ICML-96 Workshop on Learning in Context-Sensitive Domains,
at the 13th International Conference on Machine Learning, Bari, Italy, pp. 53-59.

Valkenburg, R. and Dorst, K. (1998). The reflective practice of design teams, Design Studies,
19: 249-271.

References 136

Vera, A. H. and Simon, H. A. (1993). Situated action: A symbolic interpretation, Cognitive
Science, 17: 7-48.

Wang, J. and Howard, H. C. (1994). Recording and reuse of design strategies in an integrated
case-based design systems, Artificial Intelligence for Engineering Design, Analysis and
Manufacturing (AIEDAM), 2: 219-238.

Wheeler, M. (1994). For whom the bell tolls? the roles of representation and computation in the
study of situated agents, Working Paper, School of Cognitive and Computing Science,
Brighton, UK.

Widmer, G. and Kubat, M. (1996). Learning in the presence of concept drift and hidden contexts,
Machine Learning, 23(1): 69-101.

Appendix A 137

Appendix A

Recognising various Shape Semantics using the Recogniser
module of SLiDe

Recognition of Simple Rotation (Rs)

Recognition of Radiality (Tr)

ei = 1 2 3

1

2

3

ei = 1 2 3 4 5 6

1

2

3

4

5
6

Appendix A 138

Recognition of Translational Repetition (Pr)

Recognition of Scaling (Es)

Recognition of Linearity (Ls)

ei = 1 2 3

1

2

3

ei = 1 2 3

1
23

ei = 1 2 3 4

1 2 3 4

Appendix B 139

Appendix B

The fourth set of representations developed using the
Generator module of SLiDe

N16 N17

N18 N19

Appendix B 140

N20 N21

N22 N23

N24

Appendix C 141

Appendix C

The fifth set of representations developed using the
Generator module of SLiDe

N25 N26

N27 N28

Appendix C 142

N29 N30

N31 N32

N33
N34

Appendix C 143

N35 N36

N37 N38

N39

Appendix D

Abstracts of Papers Published from the Research in this
Thesis

(1) Gero, J. S. and Reffat, R. M. (to appear). Multiple representations as a
platform for situated learning systems in designing, Knowledge Based
Systems.

This paper introduced the development of multiple representations as a platform
for learning design knowledge in relation to the situations within which it was
recognised. The benefits of this approach derive from the fact that knowledge is
more useful when it is learned in relation to its situation and less useful when it
is learned out of context. The situation is the way in which knowledge is located
in relation to its surroundings. The situatedness of knowledge is constructed
through learning which parts of the surroundings are in conjunction with it
across different representations of a design composition. In order to learn the
situatedness of design knowledge a medium is needed to present the design
composition from different views, each of which allows for various situations to
be encountered. What makes multiple representations useful in the context of
situatedness is that they provide the opportunities for different and rich
relationships among design knowledge to be constructed. This provides a system
within which to learn from a number of representations in which the situatedness
of knowledge can be discerned and learned. Architectural design compositions
were chosen as a vehicle for the demonstration of the concept of situatedness in
designing because the discovery of relationships among parts of the design
composition are fundamental tasks in designing. The paper showed how
multiple representations could provide a platform for situated learning systems
in designing. What kind of situated knowledge could be learned from some of
the possible representations of an architectural design composition is discussed.
The regularities of relationships between design knowledge and its situations are
investigated.

(2) Reffat, R. M. and Gero, J. S. (2000). Computational situated learning in
designing: Application to architectural shape semantics, in J. S. Gero (ed.),
Artificial Intelligence in Design’00, Kluwer, Dordrecht (to appear).

This paper presented the development of a computational system of Situated
Learning in Designing (SLiDe). Situated learning is based on the concept that
knowledge is more useful when it is learned in relation to its immediate and
active context, ie its situation, and less useful when it is learned out of context.
The usefulness of design knowledge is in its operational significance based upon
its situation within which it was recognised. SLiDe elucidates how design

Appendix D 145

knowledge is learned in relation to its situation and how designing situations are
constructed and altered over time in response to changes taking place in the
design environment. SLiDe is implemented within the domain of architectural
shapes in the form of floor plans to capture the situatedness of shape semantics.
SLiDe utilises an incremental learning clustering mechanism (not affected by
concept drift), that makes it capable of constructing various situational
categories and modifying them over time. The paper concluded with a
discussion of the potential benefits of using SLiDe during the conceptual stages
of designing.

(3) Reffat, R. M. and Gero, J. S (2000). Towards active support systems for
architectural designing, Education of Computer Aided Architectural Design
in Europe, eCAADe18 2000 (to appear).

This paper proposed the application of a situated learning approach in designing
integrated with a conventional CAD system. The approach is implemented in
SLiDe (Situated Learning in Designing) and integrated as SLiDe-CAAD, to
provide interactive support in designing exemplified within the composition of
architectural shapes. SLiDe-CAAD is proposed to assist in exploring the design
space for various alternatives of design compositions; recognising shape
semantics from a design composition; and in maintaining the integrity of shape
semantics or desired design concepts of interest in the design composition.
SLiDe-CAAD is introduced to provide a collaboration between the designer and
the computer during the process of designing.

(4) Reffat, R. M. and Gero, J. S. (1999). Situatedness: A new dimension for
learning systems in design, in A. Brown, M. Knight and P. Berridge (eds),
Architectural Computing: From Turing to 2000, eCAADe and The
University of Liverpool, UK, pp. 252-261.

In this paper we adopted the approach that designing is a series of situated acts,
ie designing cannot be pre-planned to completion. This is based on ideas from
situated cognition theory that claims that what people perceive, how they
conceive and what they do develop together and are adapted to the environment.
For a system to be useful for human designers it must have the ability to
associate what is learned to its environment. In order for a system to do that such
a system must be able to acquire knowledge of the environment that a design
constructs. Therefore, acknowledging the concept of situatedness is of
importance to provide a system with such capability and add on a new
dimension to existing learning systems in design. A situated learning system in
designing (SLiDe) is developed and has the capability to construct its own
situational categories from its perceptual experiences and modify them if
encountered again to link the learned knowledge to its corresponding situation.
We have chosen architectural shapes as the vehicle to demonstrate our ideas and
used multiple representations to build a platform for a SLiDe to learn from. In
this paper the concept of situatedness and its role in both designing and learning
are discussed. The framework of a SLiDe is introduced and how the potential

Appendix D 146

outcome of such a system will support human designers while designing is
discussed.

(5) Reffat, R. M. and Gero, J. S. (1998). Learning about shape semantics: A
situated learning approach, in T. Sasada, S. Yamaguchi, M. Morozumi, A.
Kaga and R. Homma (eds), Proceedings of CAADRIA ’98, CAADRIA,
Kumomoto, Japan, pp. 375-384.

Designers recognise or make sense of objects in the context "situations" of other
things. Designing cannot be predicted. The designer has to be “at a particular set
of states” in order to decide what to do. The inability to determine a priori all
design states implies that any design process cannot be pre-planned and design
actions cannot be pre-defined. Situated learning is based on the concept that
knowledge is contextually situated and is fundamentally influenced by the
context in which it is used. We proposed a situated learning approach in the
domain of architectural shapes designing. This paper elaborated the concept of
situated learning and demonstrated what it produced in the domain of shape
semantics.

(6) Gero, J. S. and Reffat, R. M. (1997). Multiple representations for situated
agent based learning, in B. Verma and X. Yao (eds), ICCIMA’97, Griffith
University, Gold Coast, Queensland, Australia, pp. 81-95.

Designers interact with the world not as actors following preconceived plans but
relate to the situations encountered. Learning the situatedness of design
knowledge is as important as learning design knowledge. Knowledge can be
represented in many ways. Multiple representations combine the advantages of
different representational forms within one system. Situated agent-based
learning discovers and acquires useful knowledge and recognises the situation
from multiple representations of the knowledge. In this paper, a model of a
situated agent-based learning is described and the use of multiple representations
in learning knowledge is presented.

