Chapter 7: Kinetic Energy and Work

- Kinetic Energy
- Work (constant force)
- Work – Kinetic Energy Theorem
 - work done by a gravitational force
- Work (variable force)
 - work done by a spring force
- Power

Why do we study kinetic energy and work?

They provide us with a simpler way to calculate speed as a function of position.

Example 1

\[F = 1.0 \, N \]

\[v_i = 0 \quad \text{to} \quad v_f = ? \]

\[1 \text{ m} \]

A particle is moved 10 m by \(F = 1.0 \, N \). What is its final speed?
Answer:

\[\text{work} = \text{change in kinetic energy} \]

\[Fd \cos \phi = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \]

force

\[(1)(10) \cos(0) = \frac{1}{2} \ 2 \ v_f^2 - \frac{1}{2} \ 2 \ v_i^2 \]

\[10 = v_f^2 \]

\[\sqrt{10} \text{ m/s} = v_f \]

Example 2:

a particle slides along a track. what \(v_f \)?

\[h = 10 \text{ m} \]

Solution:

\[\text{work} = \text{change in kinetic energy} \]

\[Fd \cos \phi = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \]

\[mgh \cos \theta = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \]

\[(9.8)(10) = \frac{1}{2} v_f^2 \]

\[v_f = \sqrt{2(98)} \text{ m/s}. \]
Kinetic Energy

\[K = \frac{1}{2} m v^2 \]

Example: a particle has a mass of 10 kg and a velocity of 20 m/s. What is its kinetic energy?

Answer:

\[K = \frac{1}{2} m v^2 \]
\[= \frac{1}{2} (10)(20)^2 \]
\[= 2000 \text{ J} \]

In SI unit, energy is measured in Joule (J)

\[1 \text{ J} = 1 \text{ kg} \left(\frac{\text{m}}{\text{s}} \right)^2 \]

Work

\[W = F \cdot d \]

Work done by a force on a particle.
Example:

\[F = 10 \text{N} \]

\[\theta = 45^\circ \]

\[\vec{d} \]

\[\vec{d} = 20 \text{m} \]

What is the work done on a particle by a constant force to move it 20 m?

Answer:

\[W = F \cdot \vec{d} \]

\[= (10)(20) \cos 45^\circ = \frac{200}{\sqrt{2}} \text{J} \]

Work is also measured in Joules

1 Joule = 1 N \cdot \text{m} = 1 \text{kg} \cdot \text{m}^2 \cdot \text{s}^{-2} \cdot \text{m}.

Example:

\[F = 10 \text{N} \]

\[\theta = 90^\circ \]

\[\vec{d} \]

\[\vec{d} = 20 \text{m} \]

Answer:

\[W = F \cdot \vec{d} \]

\[= Fd \cos 0 = 0 \]

Example:

\[F = 10 \text{N} \]

\[\theta = 135^\circ \]

\[\vec{d} \]

\[\vec{d} = 20 \text{m} \]

Answer:

\[W = F \cdot \vec{d} \]

\[= Fd \cos 135^\circ = -\frac{200}{\sqrt{2}} \text{J} \]
when the component of the force along the direction of \(\vec{d} \), work is positive

when \(\vec{F} \) is normal to \(\vec{d} \), \(W = 0 \)

when the component of the force is opposite to \(\vec{d} \), work is negative

Work - Energy Theorem

\[
\Delta K = W
\]

Change in Kinetic Energy

\[= K_f - K_i\]

Final Kinetic Energy \(\rightarrow \) Initial Kinetic Energy

Net work done on the particle.
\[K_f - K_i = W \]
\[K_f = K_i + W \]

Kinetic Energy after the work = Kinetic Energy before the work + the net work

If \(W \) is positive, final kinetic energy increases (velocity increases).
We say energy is transferred to the particle.

If \(W \) is negative, final kinetic energy decreases (velocity decreases).
We say energy is transferred from the particle.
Example: \(M = 225 \text{ kg} \), \(10 \text{ N} \)

\[
\begin{align*}
\text{Frictionless} & \quad \quad 8.5 \text{ m} \\
= d & \\
\end{align*}
\]

Two forces move a block 8.5 m. What is the net work done on the block?

Answer:

Method 1

\[
W = W_1 + W_2 + W_g + W_N
\]

\[
\begin{align*}
\text{Work done by} & \quad \text{Work done by} \quad \text{Work done by} \quad \text{Work done by} \\
F_1 & \quad F_2 & \quad mg & \quad N
\end{align*}
\]

\[
= F_1 d \cos \phi_1 + F_2 d \cos \phi_2 + 0 + 0
\]

\[
= 10(8.5) \cos 40^\circ + 12(8.5) \cos 30^\circ
\]

\[
= 153 \text{ J}.
\]
method II:

\[W = \mathbf{F}_{\text{net}} \cdot \mathbf{d} = d \cdot \mathbf{F}_{\text{net}} = 0 \]

\[= F_{\text{net},x} \, dx + F_{\text{net},y} \, dy \]

\[= [10 \cos 40 + 12 \cos 30] \, (8.5) \]

\[= 153 \, J. \]

What is the final speed

\[W = K_f - K_i \]

\[153 \, J = \frac{1}{2} \, (255) \, u_f^2 - \frac{1}{2} \, 255 \, (0) \]

\[u_f = \sqrt{\frac{2 \times 153}{255}} = 1.22 \, \text{m/s} \]

Example: An object slides a distance \(d \), and the following according to the work done by \(F \):

1. biggest work
2. zero work
3. least work

\[F \]
Work done by a gravitational force

We know that the work done by a constant force is
\[W = \mathbf{F} \cdot \mathbf{d} \]
\[= Fd \cos \phi \]

A gravitational force \(\mathbf{F}_g \) is a constant force
\[W_g = \mathbf{F}_g \cdot \mathbf{d} \]
\[= mgd \cos \phi \]

Rising particle
- Final \(W_g = mgd \cos 180^\circ \)
 - \(= -mgd \)
 - = negative work

Falling particle
- Initial \(W_g = mgd \cos 90^\circ \)
 - \(= mgd \)
 - = positive work

Initial Energy transferred from the particle
\(\Rightarrow \) speed decreases

Final Energy transferred to the particle
\(\Rightarrow \) speed increases
Work done in lifting and lowering a particle

Suppose we use a vertical constant force to lift or lower a particle. The work-kinetic energy theorem tells us that the change in the kinetic energy of the particle is equal to the work done on the particle.

\[\Delta K = K_f - K_i = W_g + W_F \]

If the initial and final speed of the particle are the same ⇒ \(K_f = K_i \)

\[0 = W_g + W_F \]

\[W_F = -W_g \]

Example

\[M = 15 \text{kg} \]

Frictionless surface

Initial stationary \(v_i = 0 \)

Final stationary \(v_f = 0 \)

\(h = 2.5 \text{ m} \)

\(5 \text{ m} \)
Q. How much work W_g is done on the block by the gravitational force?

A. $W_g = F_g \cdot \Delta \vec{d}$

 $= mg \Delta d \cos \phi$

To find $d \cos \phi$

Method 1

$\cos \phi = \cos (\theta + 90) = -\sin \theta$

$\Delta \sin \theta = h$

$\Rightarrow W_g = -mg \Delta h$

$= -(15)(9.8)(2.5) = -368 \text{ J}$.

Method 2

$W_g = F_g \cdot \Delta \vec{d}$

$\Delta \cdot \text{ dot product means the product of the magnitude of } F_g \text{ by the projection of } \Delta \text{ along } F_g$

(from figure $= -h$

$W_g = mg (-h)$

$= -368 \text{ J}$

Q. How much work W_T is done by the tension T?

A. We do not know the value of \vec{T}, but we know $\Sigma T = -\Sigma i = 0$. Thus

$W_g + W_T + W_N = K_f - K_i = 0$

$\vec{L} = 0 \text{ since } \vec{N} \text{ is perpendicular to } \vec{d}$
\[W_T = -W_g = -(-368) = 368 \text{ J} \]

Q. Compare tension and work \(W_T \) done by \(T \) for the following cases (Assume frictionless surface).

CASE A

\[\dot{v}_i = \dot{v}_f = 0 \Rightarrow W_g + W_T + W_N^0 = \Delta K = 0 \]

\[W_T = -W_g \]

In both cases, the projections of the displacement along \(\vec{F}_g \) are equal to \(h \).

\[\Rightarrow W_{\text{gA}} = W_{\text{gB}} \]

\[\Rightarrow W_{T_{\text{A}}} = W_{T_{\text{B}}} \]

The work done by \(T \) in both cases are equal.

\[W_{T_{\text{A}}} = T_A d_A \]

\[W_{T_{\text{B}}} = T_B d_B \]

\[\begin{align*}
T_A d_A & = T_B d_B \\
\text{since } d_A & < d_B \\
\Rightarrow T_A & > T_B
\end{align*} \]
Example

Q. What is the work done by gravitational force?

A. \[W_g = \vec{F}_g \cdot \vec{d} \]
\[= mgd \cos \theta \]
\[= (500)(9.8)(12) \]
\[= 59 \text{ KJ} \]

Q. What is the work done by the tension?

Newton's second law:
\[\vec{F}_{\text{net}} = ma \]
\[T - mg = m(-a) \]
\[T = m(g - a) \]
\[= m(9 - \frac{g}{5}) = 500(9.8)(1 - \frac{1}{5}) \]
\[= 500(9.8) \cdot \frac{4}{5} \]
\[W_T = \vec{T} \cdot \vec{d} \]
\[= Td \cos 180^\circ \]
\[= (500)(9.8)(\frac{4}{5})(12)(-1) = -47 \text{ KJ} \]

Q. What is the final kinetic energy \(K_f \)?
Work - Kinetic Energy Theorem

\[W_{\text{net}} = K_f - K_i \]
\[W_g + W_T = K_f - K_i \]
\[\frac{1}{2} m v_i^2 \]
\[K_f = W_g + W_T + K_i \]
\[= 59 \text{kJ} - 47 \text{kJ} + \frac{1}{2} (500)(4)^2 = 16 \text{kJ} \]

Work done by a variable force:

Suppose a particle moves from position \(\vec{r}_i = x_i \hat{i} + y_i \hat{j} + z_i \hat{k} \) to \(\vec{r}_f = x_f \hat{i} + y_f \hat{j} + z_f \hat{k} \).

The work done by a variable force \(\vec{F} = F_x \hat{i} + F_y \hat{j} + F_z \hat{k} \) is given by

\[W = \int_{x_i}^{x_f} F_x \, dx + \int_{y_i}^{y_f} F_y \, dy + \int_{z_i}^{z_f} F_z \, dz \]

For the variable force case, the work - kinetic energy theorem still holds: \(W = K_f - K_i \)

Spring force is an example of a variable force.
What is the spring force?

\[\mathbf{F} = -k \mathbf{d} \]

Hooke's Law

Spring constant measured in \(\frac{N}{m} \).

One dimension:

\[F = -k \times \]

Relaxed State

\[
\begin{align*}
F &= 0 \\
x &= 0
\end{align*}
\]

Compressed state

\[
\begin{align*}
F &= \text{positive} \\
x &= \text{negative}
\end{align*}
\]

Stretched State

\[
\begin{align*}
F &= \text{negative} \\
x &= \text{positive}
\end{align*}
\]
The work done by a spring force

\[W_s = \frac{k}{2} \left(x_i^2 - x_f^2 \right) \]

\(x_i \) \hspace{1cm} \text{Initial position}

\(x_f \) \hspace{1cm} \text{Final position}

Q. Derive the above formula.

A. \[W_s = \int_{x_i}^{x_f} F \, dx \]

\[= \int_{x_i}^{x_f} (-kx) \, dx \]

\[= -k \int_{x_i}^{x_f} x \, dx \]

\[= -k \left[\frac{x^2}{2} \right]_{x_i}^{x_f} \]

\[= -\frac{k}{2} \left(x_f^2 - x_i^2 \right) \]

\[= \frac{k}{2} \left(x_i^2 - x_f^2 \right). \]

Q. For the following situations, is the work done by the spring force positive, negative or zero?

\begin{align*}
\text{Initial} & \quad \begin{array}{c}
\text{Initial} \\
\hline
\text{Position} \\
\hline
\text{Final} \\
\hline
\text{Final} \\
\hline
\end{array} \\
\begin{array}{c}
\text{x=0} \\
\hline
\text{x=0} \\
\hline
\end{array} \\
\begin{array}{c}
\text{x=0} \\
\hline
\text{x=0} \\
\hline
\end{array} \end{align*}

\begin{align*}
\text{Final} & \quad \begin{array}{c}
\text{Final} \\
\hline
\text{Position} \\
\hline
\text{Initial} \\
\hline
\text{Initial} \\
\hline
\end{array} \\
\begin{array}{c}
\text{x=0} \\
\hline
\text{x=0} \\
\hline
\end{array} \\
\begin{array}{c}
\text{x=0} \\
\hline
\text{x=0} \\
\hline
\end{array} \end{align*}

\[\begin{cases} \quad x_i^2 > x_f^2 \\ \quad \Rightarrow W_s = \text{positive} \end{cases} \]
When the final position is closer to the relaxed state than the initial position to the relaxed state, the W_s is positive.

Example: A block is attached to a spring. An applied force of magnitude $F_a = 4.9 \text{ N}$ would be needed to hold the block at $x_i = 12 \text{ mm}$.
Q. What is the work \(W_s \) done by the spring force if the block moves from \(x_1 = 0 \) to \(x_2 = 17 \text{ mm} \)?

\[
A. \quad W_s = \frac{k}{2} (x_i^2 - x_f^2) = 0 \quad 17 \text{ mm}
\]

We do not know the spring constant \(k \) but we can find it from:

\[
F = -kx \Rightarrow k = -\frac{F}{x} = -\frac{(-4.9 \text{ N})}{12 \text{ mm}}
\]

\[
k = \frac{4.9}{12 \times 10^{-3}} \frac{\text{N}}{\text{m}}
\]

\[
W_s = \frac{1}{2} \frac{4.9}{12 \times 10^{-3}} (0 - (17 \times 10^{-3})^2) = -0.059 \text{ J}
\]

Example:

\[
k = \frac{750 \text{ N}}{\text{m}} \quad \nu = 0.15 \text{ m/s} \quad m = 0.4 \text{ kg}
\]

\[
u = 0 \text{ momentarily}
\]

\[
\Delta \nu = ?
\]

Oct 13, 01
What is the distance the spring compressed when the block is momentarily stopped?

\[W_s = K_f - K_i \]

\[\frac{k}{2} (x_i^2 - x_f^2) = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2 \]

\[\frac{750}{2} (0 - d^2) = \frac{1}{2} (0.4)(0) - \frac{1}{2} (0.4)(0.5)^2 \]

\[- \frac{750}{2} d^2 = - \frac{1}{2} (0.4)(0.5)^2 \]

\[d = \sqrt{\frac{(0.4)(0.5)^2}{750}} = 1.2 \times 10^{-2} \text{ m} = 1.2 \text{ cm} \]

The work done by an applied force:

The work done by an applied force can be found from the work done by the spring force using:

\[W_{\text{net}} = K_f - K_i \]

\[W_s + W_a = K_f - K_i \]

For \(U_f = U_i \):

\[W_a = -W_s \]
Power

\[P_{avg} = \frac{W}{\Delta t} \]

Average power

The average power \(P_{avg} \) due to a force during a time interval \(\Delta t \) is the work \(W \) done by this force during \(\Delta t \).

\[P = \frac{\text{d}W}{\text{d}t} \]

Power

The instantaneous power \(P \) due to a force is the time rate of doing work.

\[P = F \cdot \vec{s} \]

Work

\[P_{avg} = \frac{W}{\Delta t} = \text{slope} \]

\[P = \frac{\text{d}W}{\text{d}t} = \text{slope} \]

Work vs. time

Time
<table>
<thead>
<tr>
<th></th>
<th>Power</th>
<th>Symbol</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SI</td>
<td>Watt</td>
<td>W</td>
<td>J·s</td>
</tr>
<tr>
<td>English</td>
<td>horsepower</td>
<td>hp</td>
<td>550 ft·lb/s</td>
</tr>
</tbody>
</table>

Work can be measured in kilowatt-hour

1 Kilowatt-hour = 1 kW·h

\[= 10^3\,W \cdot 3600\,s \]

\[= 3.6 \times 10^6\,J \]

Q. Show that \(P = \vec{F} \cdot \vec{v} \)

A. Instantaneous Power

\[= \frac{dW}{dt} \]

\[= \frac{\vec{F} \cdot d\vec{r}}{dt} \]

\[= \vec{F} \cdot \frac{d\vec{r}}{dt} = \vec{F} \cdot \vec{v} \]

Q. What is the power due to \(T \) on the block?

A. Since \(\vec{T} \) is perpendicular to \(\vec{v} \), \(P = 0 \)

\[P = \vec{T} \cdot \vec{v} = T\,v \cos 90^\circ = 0 \]
Example

\[\begin{align*}
F_1 &= 2.0 \text{ N} \\
\theta &= 60^\circ \\
\vec{u} &= 3.0 \text{ m/s}
\end{align*} \]

Q. What is the net power due to \(\vec{F}_1 \) and \(\vec{F}_2 \)?

A.
\[\begin{align*}
P_1 &= \vec{F}_1 \cdot \vec{u} \\
&= F_1 \, u \cos 180 \\
&= (2.0)(3.0)(-1) = -6.0 \text{ W}
\end{align*} \]

\[\begin{align*}
P_2 &= \vec{F}_2 \cdot \vec{u} \\
&= F_2 \, u \cos 60^\circ \\
&= (4.0)(3.0)(\frac{1}{2}) = 6.0 \text{ W}
\end{align*} \]

\[P_{\text{net}} = P_1 + P_2 = 0 \]

The net rate of transfer of energy to or from the block is zero. That is, the net work is not changing. Thus, the kinetic energy \(\frac{1}{2} mu^2 \) is not changing and so the speed of the block will remain 3.0 m/s.