KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
Physics Department

PHYS 301
Second Major Exam (2nd May, 2001) – Term 002

Instructor’s Name: Dr. A. Mekki

Student’s Name: ________________________________

I.D. No: ________________________

Exam Time: 90 minutes
Show the details of your work and circle your answer

<table>
<thead>
<tr>
<th>Problem #</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>/40</td>
</tr>
<tr>
<td>2</td>
<td>/30</td>
</tr>
<tr>
<td>3</td>
<td>/30</td>
</tr>
<tr>
<td>Total:</td>
<td>/100</td>
</tr>
</tbody>
</table>
Q1. (40 points)
Consider an RLC circuit connected in series to an alternating source $\varepsilon = \varepsilon_o \cos (\omega t)$ as shown in the figure. The switch is closed at $t = 0$.
(a) Show that the differential equation governing the charge in the capacitor is given by:

$$\dot{q} + \frac{R}{L} \dot{q} + \frac{1}{LC} q = \left(\frac{\varepsilon_o}{L}\right) \cos \omega t$$ \hspace{1cm} (1)

(b) Write the mechanical equivalent to the above equation and deduce the solution to equation (1) in the steady state mode in terms of R, L, C, ω and t.
(c) Find the voltage across the resistance as a function of time.
(d) What is the time averaged energy dissipated in the resistor?
(e) What is the time averaged energy stored in the capacitor?

(recall $\langle x \rangle = \frac{1}{T} \int_0^T x dt; \quad T = \frac{2\pi}{\omega}$)
Q2. (30 points)
Consider a non-uniform spherical mass distribution of density \(\rho (r) = Ar \) (A is a constant) and radius \(R \). Calculate the gravitational field \(g(r) \) and potential \(\phi(r) \):
(a) inside the sphere \((r < R) \)
(b) outside the sphere \((r > R) \)
(c) Draw few field lines and the corresponding equipotentials outside the sphere.
(d) What is the energy required to bring a point mass \(m \) from infinity to the surface of the sphere?
Q3. (30 points)

(a) Prove (in cartesian coordinates) that the curve that gives the shortest path between two fixed points \(P_1(x_1, y_1) \) and \(P_2(x_2, y_2) \) in the xy plane is given by a straight line that joins these two points.

(b) Consider two arbitrary points \(P_1(a, Z_1, \phi_1) \) and \(P_2(a, Z_2, \phi_2) \) lying on the surface of a right cylinder of radius \(a \).

(i) Use cylindrical coordinates to show that the path between the two points can be written in the form

\[
S = \int_{\phi_1}^{\phi_2} \sqrt{a^2 + \dot{z}^2} \, d\phi
\]

(ii) Show that in order to minimize the integral, the \(z \) coordinates should vary as

\[z = A \phi \quad \text{where } A \text{ is a constant} \]

with the initial condition that \(Z(\phi = 0) = 0 \)

(iii) Using the fact that in cylindrical coordinates, \(x = a \cos \phi \) and \(y = a \sin \phi \), what would be the shortest path between the points \(P_1 \) and \(P_2 \)?