NONLINEAR VARIATIONAL INEQUALITIES FOR PSEUDOMONOTONE OPERATORS WITH APPLICATIONS∗

Qamrul Hasan Ansari†
Aligarh Muslim University
Department of Mathematics
Aligarh 202 002, India

and

Jen-Chih Yao
National Sun Yat-sen University
Department of Applied Mathematics
Kaohsiung 804, Taiwan, ROC

Abstract. In this paper, we prove the existence of solutions to the variational and variational-like inequalities for pseudomonotone and pseudodissipative and, η-pseudomonotone and η-pseudodissipative operators, respectively. As applications of our results, we prove the existence of a unique solution of nonlinear equations, fixed point problems and eigenvalue problems.

1991 Mathematics Subject Classification. 49J40, 47H10, 47H19, 47H05

1. INTRODUCTION AND PRELIMINARIES

Let X be a real locally convex Hausdorff topological vector space with topological dual X∗ and K a non-empty subset of X. Let T : K → X∗ be an operator and η : K × K → X a bifunction. The variational-like inequality problem (for short, VLIP) is to find x̄ ∈ K such that

⟨T(x̄), η(y, x̄)⟩ ≥ 0, for all y ∈ K,

where ⟨u, x⟩ denotes the pairing between u ∈ X∗ and x ∈ X. For further details on VLIP, we refer to [2, 5, 9-12, 16] and references therein.

∗This research was supported by the National Science Council of the Republic of China.
†Present address: Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 804, Taiwan, ROC.
When \(\eta(y, x) = y - x \), the VLIP reduces to the variational inequality problem (for short, VIP) [7] of finding \(\bar{x} \in K \) such that

\[
\langle T(\bar{x}), y - \bar{x} \rangle \geq 0, \quad \text{for all} \ y \in K.
\]

In most of the results on the existence of solutions to the VIP and VLIP some kind of continuity assumption on the operator \(T \) is needed if it has some kind of monotonicity assumption, see for example [3-4, 6-8, 12-15, 17-18] and references therein.

The main object of this paper is to establish some existence results for VIP and VLIP in the setting of non-compact convex set \(K \) with pseudomonotone and pseudodissipative and, \(\eta \)-pseudomonotone and \(\eta \)-pseudodissipative operator \(T \), respectively. As applications of our results, we prove the existence of a unique solution of nonlinear equations, fixed point problems and eigenvalue problems without any continuity assumption on the operator \(T \).

We shall use the following notation and definitions. Let \(A \) be a non-empty set. We shall denote by \(2^A \) the family of all subsets of \(A \). If \(A \) and \(B \) are non-empty subsets of a topological vector space \(Y \) such that \(A \subseteq B \), we shall denote by \(\text{int}_B A \) the interior of \(A \) in \(B \).

The inverse \(F^{-1} \) of a multivalued map \(F : X \to 2^Y \) is the multivalued map from \(\text{R}(F) \), the range of \(F \), to \(X \) defined by

\[
x \in F^{-1}(y) \quad \text{if and only if} \quad y \in F(x).
\]

We shall use the following particular form of Corollary 1 in [1].

Lemma 1.1. Let \(K \) be a non-empty and convex subset of a Hausdorff topological vector space \(E \), and let \(S : K \to 2^K \) be a multivalued map. Assume that the following conditions hold.

(a) For each \(x \in K \), \(S(x) \) is non-empty and convex.

(b) \(K = \bigcup \{ \text{int}_K S^{-1}(y) : y \in K \} \).

(c) If \(K \) is not compact, assume that there exists a non-empty, compact and convex subset \(C \) of \(K \) and a non-empty and compact subset \(D \) of \(K \) such that for each \(x \in K \setminus D \), there exists \(\tilde{y} \in C \) such that \(x \in \text{int}_K S^{-1}(\tilde{y}) \).

Then \(S \) has a fixed point, that is, there exists \(x_0 \in K \) such that \(x_0 \in S(x_0) \).

2. EXISTENCE RESULTS

For a given bifunction \(\eta : K \times K \to X \), an operator \(T : K \to X^* \) is called:
(i) \(\eta\)-monotone if,
\[
\langle T(y) - T(x), \eta(y, x) \rangle \geq 0, \quad \text{for all } x, y \in K;
\]

(ii) \(\eta\)-dissipative if,
\[
\langle T(y) - T(x), \eta(y, x) \rangle \leq 0, \quad \text{for all } x, y \in K;
\]

(iii) \(\eta\)-pseudomonotone if,
\[
\langle T(x), \eta(y, x) \rangle \geq 0 \quad \text{implies} \quad \langle T(y), \eta(y, x) \rangle \geq 0, \quad \text{for all } x, y \in K,
\]

or equivalently,
\[
\langle T(y), \eta(y, x) \rangle < 0 \quad \text{implies} \quad \langle T(x), \eta(y, x) \rangle < 0, \quad \text{for all } x, y \in K;
\]

(iv) \(\eta\)-pseudodissipative if,
\[
\langle T(y), \eta(y, x) \rangle \geq 0 \quad \text{implies} \quad \langle T(x), \eta(y, x) \rangle \geq 0, \quad \text{for all } x, y \in K,
\]

or equivalently,
\[
\langle T(x), \eta(y, x) \rangle < 0 \quad \text{implies} \quad \langle T(y), \eta(y, x) \rangle < 0, \quad \text{for all } x, y \in K.
\]

When \(\eta(y, x) = y - x\), the definitions of \(\eta\)-monotone, \(\eta\)-dissipative, \(\eta\)-pseudomonotone and \(\eta\)-pseudodissipative reduce to the definitions of monotone, dissipative [17], pseudomonotone and pseudodissipative, respectively.

\textbf{Example 2.1.} Let \(T : \mathbb{R} \to \mathbb{R}\) be defined as
\[
T(x) = \begin{cases}
1 & : x \neq 1 \\
2 & : x = 1
\end{cases}
\]

Then \(T\) is pseudomonotone as well as pseudodissipative but it is neither monotone nor hemicontinuous.

For \(\eta(y, x) = y^2 - x^2\), \(T\) is also \(\eta\)-pseudomonotone as well as \(\eta\)-pseudodissipative but not \(\eta\)-monotone.

An example of a pseudomonotone hemicontinuous operator is given in [15] which is not continuous on finite dimensional spaces.

\textbf{Theorem 2.1.} Let \(K\) be a non-empty and convex subset of a locally convex Hausdorff topological vector space \(X\) and let \(\eta : K \times K \to X\) be a bifunction such that \(\eta(x, x) = 0\), for all \(x \in K\). Assume that
(i) \(T : K \to X^* \) is \(\eta \)-pseudomonotone and \(\eta \)-pseudodissipative;

(ii) for each fixed \(y \in K \), the map \(x \mapsto \langle T(y), \eta(y, x) \rangle \) is upper semicontinuous on \(K \);

(iii) for each fixed \(x \in K \), the map \(y \mapsto \langle T(x), \eta(y, x) \rangle \) is quasi-convex;

(iv) there exists a non-empty, compact and convex subset \(C \) of \(K \) and a non-empty and compact subset \(D \) of \(K \) such that for each \(x \in K \setminus D \), there exists \(\tilde{y} \in C \) such that \(\langle T(x), \eta(\tilde{y}, x) \rangle < 0 \).

Then the VLIP has a solution.

Proof. Assume that the VLIP has no solution. Then for each \(x \in K \),

\[\{ y \in K : \langle T(x), \eta(y, x) \rangle < 0 \} \neq \emptyset. \]

We define a multivalued map \(S : K \to 2^K \) by

\[S(x) = \{ y \in K : \langle T(x), \eta(y, x) \rangle < 0 \}, \quad \text{for all } x \in K. \]

Then clearly for all \(x \in K \), \(S(x) \neq \emptyset \). From assumption (iii), it is easy to see that \(S(x) \) is convex, for all \(x \in K \). Now

\[S^{-1}(y) = \{ x \in K : \langle T(x), \eta(y, x) \rangle < 0 \}. \]

For each \(y \in K \), we denote by \([S^{-1}(y)]^c \) the complement of \(S^{-1}(y) \) in \(K \). From the \(\eta \)-pseudomonotonicity of \(T \), we have

\[[S^{-1}(y)]^c = \{ x \in K : \langle T(x), \eta(y, x) \rangle \geq 0 \} \]
\[\subseteq \{ x \in K : \langle T(y), \eta(y, x) \rangle \geq 0 \} \]
\[= H(y) \text{(say)}. \]

From condition (ii), it is easy to show that for all \(y \in K \), \(H(y) \) is closed in \(K \).

From the \(\eta \)-pseudodissipativeness of \(T \), we have

\[S^{-1}(y) = \{ x \in K : \langle T(x), \eta(y, x) \rangle < 0 \} \]
\[\subseteq \{ x \in K : \langle T(y), \eta(y, x) \rangle < 0 \} \]
\[= [H(y)]^c, \text{ the complement of } H(y) \text{ in } K. \]

Hence \(S^{-1}(y) = [H(y)]^c \) and \(S^{-1}(y) \) is open in \(K \). Since \(S(x) \neq \emptyset \), we have

\[K = \bigcup_{y \in K} S^{-1}(y) = \bigcup_{y \in K} \text{int}_K S^{-1}(y). \]
By assumption (iv), for each \(x \in K \setminus D\), there exists \(\tilde{y} \in C\) such that \(\langle T(x), \eta(\tilde{y}, x) \rangle < 0\), we have \(x \in \text{int}_K S^{-1}(\tilde{y})\). Then \(S\) satisfies all the conditions of Lemma 1.1, hence there exists \(x_0 \in K\) such that \(x_0 \in S(x_0)\), that is,

\[\langle T(x_0), \eta(x_0, x_0) \rangle < 0.\]

Since \(\eta(x_0, x_0) = 0\), we have

\[0 = \langle T(x_0), \eta(x_0, x_0) \rangle < 0,\]

a contradiction. Hence the result is proved.

REMARK 2.1. If \(X\) is a reflexive Banach space equipped with weak topology, then the assumption (iv) in Theorem 2.1 can be replaced by the following condition:

(iv)' There exists \(\tilde{y} \in K\) such that \(\liminf_{\|x\| \to \infty, x \in K} \langle T(x), \eta(\tilde{y}, x) \rangle < 0\).

PROOF. By (iv)', there exists \(r > 0\) such that \(\|\tilde{y}\| < r\) and if \(x \in K\) with \(\|x\| \geq r\), we have \(\langle T(x), \eta(\tilde{y}, x) \rangle < 0\). Define \(B_r = \{x \in K : \|x\| \leq r\}\). Then \(B_r\) is a non-empty weakly compact and convex subset of \(X\). By taking \(C = D = B_r\) in assumption (iv) of Theorem 2.1, we get the conclusion.

In view of Remark 2.1, we have the following result.

COROLLARY 2.1. Let \(K\) be a non-empty and convex subset of a reflexive Banach space \(X\) equipped with weak topology and let \(\eta : K \times K \to X\) be a bifunction such that it is affine in the first argument, weakly continuous in the second argument and \(\eta(x, x) = 0\), for all \(x \in K\). Assume that \(T : K \to X^*\) is \(\eta\)-pseudomonotone, \(\eta\)-pseudodissipative and there exists \(\tilde{y} \in K\) such that \(\liminf_{\|x\| \to \infty, x \in K} \langle T(x), \eta(\tilde{y}, x) \rangle < 0\). Then the VLIP has a solution.

COROLLARY 2.2. Let \(K\) be a non-empty and convex subset of a locally convex Hausdorff topological vector space \(X\) and let \(T : K \to X^*\) be pseudomonotone and pseudodissipative. Assume that there exists a non-empty, compact and convex subset \(C\) of \(K\) and a non-empty and compact subset \(D\) of \(K\) such that for each \(x \in K \setminus D\), there exists \(\tilde{y} \in C\) such that \(\langle T(x), \tilde{y} - x \rangle < 0\). Then the VIP has a solution.

REMARK 2.2. In the results of Browder [3-4], Hartman and Stampacchia [6] (Theorem 1.1), Tarafdar [13] (Theorem 2 and Corollary), Verma [14] (Theorem 2.2) and Yao [18] (Theorem 3.3), we need continuity/hemicontinuity/continuity on finite dimensional spaces. But in Corol-
lary 2.2 we do not assume any kind of continuity assumption.

Corollary 2.3. Let K be a non-empty and convex subset of a reflexive Banach space X equipped with weak topology and let $T : K \rightarrow X^*$ be pseudomonotone, pseudodissipative and has the property that there exists $\tilde{y} \in K$ such that $\lim \inf_{\|x\| \rightarrow \infty, x \in K} \langle T(x), \tilde{y} - x \rangle < 0$. Then the VIP has a solution. Moreover, if T is strongly pseudomonotone then the solution is unique.

Remark 2.3. Corollary 2.3 is different from Theorems 3.1 and 3.2 in [17] in the following ways:

(a) X need not be a Hilbert space,
(b) K need not be closed,
(c) T need not be continuous on finite-dimensional subspaces,
(d) T need not be hemicontinuous,
(e) T is assumed only pseudomonotone and pseudodissipative, need not be monotone.

3. APPLICATIONS

Throughout this section, we will assume that H is a real Hilbert space with its inner product denoted by $(.,.)$.

Let K be a non-empty subset of H. An operator $T : K \rightarrow K$ is called:

(i) **strongly monotone** if, there exists a constant $\alpha > 0$ such that $$(T(y) - T(x), y - x) \geq \alpha \|y - x\|^2,$$ for all $x, y \in K$;

(ii) **relaxed strongly monotone** if, there exists a constant $\beta < 1$ such that $$(T(y) - T(x), y - x) \leq \beta \|y - x\|^2,$$ for all $x, y \in K$;

(iii) **relaxed strongly dissipative** if, there exists a constant $\nu < 1$ such that $$(T(y) - T(x), y - x) \geq \nu \|y - x\|^2,$$ for all $x, y \in K$;

(iv) **strongly pseudomonotone** if, there exists a constant $\gamma > 0$ such that $$(T(x), y - x) \geq 0 \text{ implies } (T(y), y - x) \geq \gamma \|y - x\|^2,$$ for all $x, y \in K$.

We now give the following result concerning the existence of a unique solution of a nonlinear equation.

Theorem 3.1. Let $T : H \to H$ be pseudomonotone, pseudodissipative and assume that there exists $\tilde{y} \in H$ such that $\lim \inf_{||x|| \to \infty} (T(x), \tilde{y} - x) < 0$. Then there exists $\bar{x} \in H$ such that $T(\bar{x}) = 0$. Moreover, if T is strongly pseudomonotone then the solution is unique.

Proof. It is similar to the proof of Theorem 3.3 in [17].

Remark 3.1. Theorem 3.1 is different from Theorem 3.3 in [17] in the following ways:

(a) T need not be hemicontinuous,

(b) T is assumed only pseudomonotone and pseudodissipative, need not be monotone.

By using the results of Section 2, we establish the following fixed point theorem.

Theorem 3.2. Let K be a non-empty and convex subset of H and $T : K \to K$ be relaxed strongly monotone and relaxed strongly dissipative. Then T has a unique fixed point.

Proof. It is similar to the proof of Theorem 3.4 in [17].

Remark 3.2. Theorem 3.2 is different from Theorem 3.4 in [17] in the following ways:

(a) K need not be closed,

(b) T is assumed relaxed strongly dissipative, need not be hemicontinuous.

Finally, we derive the following existence results for solutions to the eigenvalue problem.

Corollary 3.1. Let K be a non-empty convex cone of H and $T : K \to K$ be monotone and dissipative. Then for any nonnegative real number λ and any $z \in K$, there exists a unique $\bar{x} \in K$ such that $\lambda T(\bar{x}) + z = \bar{x}$.

Proof. It is similar to the proof of Corollary 3.7 in [17].

Remark 3.3. Corollary 3.1 is different from Corollary 3.7 in [17] in the following ways:

(a) K need not be closed,
(b) T is assumed monotone, need not be hemicontinuous.

REFERENCES

