NOTE: Give the solution of any SIX questions.

1. Show that the real line \mathbb{R} is not compact. (7 Marks)
2. Prove that a subspace Y of a complete normed space X is complete if and only if Y is closed in X. (6 Marks)
3. If X is a finite dimensional normed space, then prove that every linear operator defined on X is bounded. (6 Marks)
4. Show that the continuity and boundedness are equivalent for a linear operator T defined on a normed space X into another normed space Y. (7 Marks)
5. State uniform boundedness principle and show that it is not valid if the space X is only a normed space. (6 Marks)
6. If $T(x) = T(y)$ for every bounded linear functional T defined on a normed space X, then prove that $x = y$. (6 Marks)
7. Give the definition of a closed operator T defined on a normed space X into another normed space Y. Also, give the characterization of closed operator. (7 Marks)
8. Is every closed operator continuous and vice-versa? Justify your answer. (7 Marks)

Solution.