1 Section 7.3 Vectors

Scalar quantities have a magnitude (numerical and unit description) only like area, distance and speed. Vector quantities have a magnitude and a direction like force and velocity.

A vector is a directed line segment. The length of the line segment is the magnitude of the vector, and the direction of the vector is measured by an angle.

The point A is called the initial point (or tail) of the vector and the point B is called the terminal point (or head) of the vector. The vector is denoted by \(\overrightarrow{AB} \) and the magnitude is denoted by \(||AB|| \).

Equivalent vectors have the same magnitude and the same direction.

Multiplying a vector by a positive real number (other than 1) changes the magnitude of the vector but not its direction. Multiplying a vector by a negative real number \(a \) reverses the direction of the vector and multiplies the magnitude of the vector by \(|a| \).

Vectors can be added graphically by using the parallelogram method or the triangle method.

In the triangle method, the tail of the vector \(U \) is placed at the head of the other vector \(V \). In the parallelogram method, the tails of the two vectors \(U \) and \(V \) are placed together.

\[V - U = V + (-U) \]

Vectors in a coordinate Plane

A vector can be moved in the plane as long as the magnitude and the direction are not changed. If \(P_1(x_1, y_1) \) is the initial point of a vector and \(P_2(x_2, y_2) \) is the terminal point, then an equivalent vector \(OP \) has its initial point at the origin and its terminal point at \(P(a, b) \) where \(a = x_2 - x_1 \) and \(b = y_2 - y_1 \). The vector can be denoted by \(v = \langle a, b \rangle \); \(a \) and \(b \) are called the components of the vector.

Example 1 Find the components of a vector \(CD \) whose tail is the point \(C(2, 5) \) and whose head is the point \(D(3, -1) \). Determine a vector \(w \) that is equivalent to \(CD \) and has its initial point at the origin.

The magnitude of the vector \(v = \langle a, b \rangle \) is \(||V|| = \sqrt{a^2 + b^2} \). The direction angle is the angle between the vector and the positive x-axis and we can find it by \(\tan \alpha = \frac{b}{a} \).

Fundamental Vector Operations

If \(v = \langle a, b \rangle \) and \(w = \langle c, d \rangle \) are two vectors and \(k \) is a real number, then

1. \(||v|| = \sqrt{a^2 + b^2} \)
2. \(v + w = \langle a, b \rangle + \langle c, d \rangle = \langle a + c, b + d \rangle \)
3. \(kv = k\langle a, b \rangle = \langle ka, kb \rangle \)

Example 2 Given \(v = (12, -5) \) and \(w = (2, 7) \), find 1) \(||v|| \) 2) \(v + w \) 3) \(-5v \) 4) \(||3v - 4w|| \)
A unit vector is a vector whose magnitude is 1.

Example 3 Which of the following is a unit vector? 1) \(v = (1, 1) \) 2) \(v = (0, 1) \) 3) \(v = \left(\frac{3}{2}, \frac{4}{3} \right) \)

A unit vector in the direction of a vector \(v \) is \(\frac{v}{||v||} \).

Example 4 Find a unit vector \(u \) in the direction of \(v = (2, -9) \).

Definition of Unit Vectors \(i \) and \(j \)
\(i = (1, 0) \) \(j = (0, 1) \)
If \(v \) is a vector and \(v = (a_1, a_2) \), then \(v = a_1 i + a_2 j \).

Example 5 If \(v = (3, 4) \), represent \(v \) in terms of the unit vectors \(i \) and \(j \).

Example 6 Given \(v = 4i + 3j \) and \(w = 6i - 3j \), find \(4v + 5w \).

Horizontal and Vertical Components of a Vector
Let \(v = (a_1, a_2) \), where \(v \neq 0 \), the zero vector. Then \(a_1 = ||v|| \cos \theta \) and \(a_2 = ||v|| \sin \theta \) where \(\theta \) is the angle between the positive x-axis and \(v \).

The Horizontal component of \(v \) is \(||v|| \cos \theta \). The Vertical component of \(v \) is \(||v|| \sin \theta \).

Example 7 Is \(u = \cos \theta i + \sin \theta j \) a unit vector?

Example 8 Find the horizontal and vertical components of a vector \(v \) of magnitude 10 meters with direction angle 225°. Write the vector in the form \(v = a_1 i + a_2 j \).

Definition of Dot Product
Given \(v = (a, b) \) and \(w = (c, d) \), the dot product of \(v \) and \(w \) is given by \(v \cdot w = ac + bd \).

Example 9 Find the dot product of \(v = (6, -2) \) and \(w = (-2, 4) \).

In the following properties, \(u, v, \) and \(w \) are vectors and \(a \) is a scalar.
1) \(v \cdot w = w \cdot v \) 2) \(u \cdot (v + w) = u \cdot v + u \cdot w \) 3) \(a \cdot (u \cdot v) = (a \cdot u) \cdot v = u \cdot (a v) \)
4) \(v \cdot v = ||v||^2 \) 5) \(0 \cdot v = 0 \) 6) \(i \cdot j = j \cdot i = 1 \) 7) \(i \cdot j = j \cdot i = 0 \)

Magnitude of a Vector in terms of the Dot Product
If \(v = (a, b) \), then \(||v|| = \sqrt{v \cdot v} \)

Alternative Formula for the Dot Product
If \(v \) and \(w \) are two nonzero vectors and \(\alpha \) is the smallest non-negative angle between \(v \) and \(w \), then \(v \cdot w = ||v|| ||w|| \cos \alpha \).

Angle between Two Vectors
If \(v \) and \(w \) are two nonzero vectors and \(\alpha \) is the smallest non-negative angle between \(v \) and \(w \), then \(\cos \alpha = \frac{v \cdot w}{||v|| ||w||} \) and \(\alpha = \cos^{-1} \left(\frac{v \cdot w}{||v|| ||w||} \right) \).

Example 10 Find the measure of the smallest positive angle between the vectors \(v = 3i + 2j \) and \(w = -2i - j \).
Parallel and Perpendicular Vectors
Two vectors are parallel when the angle α between the vectors is 0° or 180°.
Two nonzero vectors v and w are orthogonal (perpendicular) if and only if $v \cdot w = 0$.

Scalar Projection
If v and w are two nonzero vectors and α is the smallest non-negative angle between v and w, then the scalar projection of v on w, $\text{proj}_w v$, is given by $\text{proj}_w v = ||v|| \cos \alpha$.

Example 11 Given $v = 3i - 4j$ and $w = i + 3j$, find $\text{proj}_w v$.

Example 12 Find a vector that has the initial point $(3, -1)$ and is equivalent to $v = 2i - 3j$.

Example 13 Let $w = 4i + j$. Find a vector perpendicular to w.