1 Section 10.3 The Inverse of a Matrix

Multiplicative Inverse of a Matrix

If \(A \) is a square matrix of order \(n \), then the inverse of matrix \(A \), denoted by \(A^{-1} \), has the property that \(A \cdot A^{-1} = A^{-1} \cdot A = I_n \) where \(I_n \) is the identity matrix of order \(n \).

Note that not all square matrices has a multiplicative inverse.

A procedure for finding the inverse uses elementary row operations. To the matrix \(A \) we will merge the identity matrix \(I \) to the right of \(A \) and denote this new matrix by \([A : I]\). Now, we will use elementary row operations to produce \([I : A^{-1}]\).

Example 1 Find \(A^{-1} \) if \(A = \begin{bmatrix} 2 & 7 \\ 1 & 4 \end{bmatrix} \).

Example 2 Find the inverse of the matrix \(A = \begin{bmatrix} 1 & 1 & 4 \\ 2 & 3 & 6 \\ -1 & -1 & 2 \end{bmatrix} \).

A singular matrix is a matrix that does not have a multiplicative inverse. A matrix that has a multiplicative inverse is a non singular matrix.

If there are all zeros in a row of the original matrix (after we apply the elementary row operations), then the matrix does not have an inverse.

Example 3 Show that the matrix \(\begin{bmatrix} 1 & -6 & 4 \\ 3 & 4 & 2 \\ 5 & 3 & 5 \end{bmatrix} \) is a singular matrix.

Systems of equations can be solved by finding the inverse of the coefficient matrix in the following steps:
1) Write the linear system as a matrix equation in the form \(AX = B \).
2) The solution is \(X = A^{-1}B \).

Example 4 Find the solution set of the following system of equations by using the inverse of the coefficient matrix:
1) \(\begin{align*}
3x_1 + 4x_2 &= -1 \\
3x_1 + 5x_2 &= 1
\end{align*} \)
2) \(\begin{align*}
x_1 + 7x_3 &= 20 \\
2x_1 + x_2 - x_3 &= -3 \\
7x_1 + 3x_2 + x_3 &= 2
\end{align*} \)

Example 5 True or False: 1) If \(AB = O \), then \(A = O \) or \(B = O \). (\(A = \begin{bmatrix} 2 & -3 \\ -6 & 9 \end{bmatrix} \) and \(B = \begin{bmatrix} -3 & 15 \\ -2 & 10 \end{bmatrix} \))
2) If \(A \) has an inverse and \(AB = O \), then \(B = O \).
3) If \(AB = AC \), then \(B = C \). (\(A = \begin{bmatrix} 2 & -1 \\ -4 & 2 \end{bmatrix} \), \(B = \begin{bmatrix} 3 & 4 \\ 1 & 5 \end{bmatrix} \), and \(C = \begin{bmatrix} 4 & 7 \\ 3 & 11 \end{bmatrix} \))
4) If \(A \) has an inverse and \(AB = AC \), then \(B = C \).
Example 6 Show that if \(A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(ad - bc \neq 0 \), then \(A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \).

Example 7 Find the inverse (if possible) of 1) \(\begin{bmatrix} 5 & 6 \\ 3 & 4 \end{bmatrix} \) 2) \(\begin{bmatrix} 5 & 1 \\ 10 & 2 \end{bmatrix} \).

Example 8 Show that \((AB)^{-1} = B^{-1}A^{-1}\).