Question One (5-Points)
Write True if the statement is true or False if not:

1. An event \(E \) and its complement are mutually exclusive events: **True**
2. If \(E_1 \) and \(E_2 \) are independent and \(E_1 \) occurs then \(E_2 \) will occur: **False**
3. The conditional probability of two mutually exclusive events always positive value: **False**
4. The interval \([-2, 5]\) can not be sample space because it contains negative values: **False**
5. The infinite set \(\{1, 2, 3, \ldots\} \) is possible values for a continues random variable: **False**

Question Two (5-Points)
1. If the sample space consist of five elementary events such that:

 \[
 P(e_1) = P(e_2) = 0.15, P(e_3) = 0.10, P(e_4) = 2P(e_5), \text{ and } A = \{e_1, e_3, e_4\}

 B = \{e_3, e_4\} \text{ are tow events defined on the sample space, then } P(A \text{ or } B) =

 a. 0.90
 b. 0.05
 c. 0.80
 d. None

2. Refer back to the above sample space in part (1), then \(P(A \text{ and } B) =

 a. 0.90
 b. 0.10
 c. 0.40
 d. **0.60**

3. If \(X \) is a random variable having the following probability distribution, then \(\mu_x =

 \[
 \begin{array}{c|ccccc}
 X & -1 & 0 & 2 & 3 & 5 \\
 P(x) & 0.2 & 0.15 & .05 & 0.25 & b \\
 \end{array}

 a. -1.76
 b. **2.4**
 c. 0.35
 d. None

4. Refer back to part (3), then \(\sigma_x^2 \) is equal to:

 a. 4.96
 b. **5.64**
 c. 11.4
 d. None

5. If \(X \) and \(Y \) two random variables, and \(E(X) = -4 \), \(E(Y) = -5 \), then \(E(X - Y) =

 a. -9
 b. **9**
 c. **1**
 d. -1