Question One (5-Points)
Write True if the statement is true or False if not:
1. Two events are considered to be mutually exclusive if the events are also independent. False
2. If E_1 and E_2 are independent and E_1 occurs then E_2 can’t occur: False
3. The conditional probability of two mutually exclusive events always positive value: False
4. The interval $[-5,-1]$ can not be an event from any sample space because it is negative: False
5. The infinite set $\{1,2,3,4,...\}$ can not be a possible values for a discrete random variable: False

Question Two (5-Points)
1. If the sample space consist of five elementary events such that:
 \[P(e_1) = P(e_2) = 0.15, P(e_3) = 0.40, P(e_4) = 2P(e_5), \text{ and } A = \{e_1,e_3,e_4\} \]
 \[B = \{e_2,e_3\} \] are two events defined on the sample space, then $P(A \text{ or } B) =$
 a. 0.90 b. 0.05 c. 0.40 d. None
2. Refer back to the above sample space in part (1), then $P(A \text{ and } B) =$
 a. 0.40 b. 0.10 c. 0.60 d. 0
3. If X is a random variable having the following Probability distribution, then $\mu_x =$
 \[X \quad -1 \quad 0 \quad 2 \quad 3 \quad 5 \]
 \[P(x) \quad 0.2 \quad 0.15 \quad .05 \quad a \quad 0.25 \]
 a. -1.76 b. 2.2 c. 0.35 d. None
4. Refer back to part (3), then σ_x^2 is equal to:
 a. 4.96 b. 2.04 c. 9.8 d. None
5. If X and Y two random variables, and $E(X) = 4$, $E(Y) = -5$, then $E(X - Y) =$
 a. -9 b. 9 c. 1 d. -1