1. Find the slope of the tangent to the curve \(y = 2x^2 + \sec^3 \sqrt{x^3 + 1} \), at \(x = 1 \).
2. Let \(s(t) = 2t^3 - 3t^2 - 12t + 10 \), be a position function of a particle moving along a coordinate line. on the interval \([-3, 3]\), describe where the particle moves to the right or left, and sketch a diagram describing the motion.

3. Let \(f(x) = x^4 - 4x^2 \), find all the critical numbers. Give the intervals where \(f(x) \) is
 a. Increasing
 b. Decreasing
 c. Concave up
 d. Concave down.
4. Let \(f(x) = x^4 + 4x^2 \), sketch a complete graph of \(f \) showing symmetry, increasing - decreasing, concavity, and relative extrema.

5. Find the points on the parabola \(y = 2x^2 \), closest to the point \(P(1, 0) \).
6. Water is running out of an inverted conical tank so that the height of the water is changing at a rate of \(2 \text{ ft/min} \). At what rate the volume is changing when the height of the water is 6 ft. The height of the tank is 10 ft and the radius of the tank is 5 ft.

\[
V = \frac{\pi r^2 h}{3}
\]

7. If \(y \) is defined implicitly by \(x^2 y + xy^2 = 2 \), then estimate the change in \(y \) at the point \(P(1, 1) \), if \(x \) changes from 1 to 0.9.
8. Use Newton’s method to approximate where the two graphs \(y = x \), and \(y = \cos x \) intersect.

9. Find \(\frac{d}{dx} \sqrt{x} \) if \(\frac{df(x)}{dx} = 2x^2 \).

10. Find all the critical numbers of \(f(\theta) = \cos 2\theta + 2 \cos x \) \(\theta \in \mathbb{R}, 2\pi \).