3 SELECTION CONSTRUCTS

Selection constructs are used to select between blocks of statements depending on certain conditions. Each condition is a logical expression (section 2.4.3). In FORTRAN, the IF statement is used to represent selection constructs. This chapter introduces four types of IF constructs: IF-ELSE, IF, IF-ELSEIF, and the simple IF constructs.

3.1 IF-ELSE Construct

3.1.1 Definition

The general form of the IF-ELSE construct is as follows:

```
IF (condition) THEN
   BLOCK1
ELSE
   BLOCK2
ENDIF
```

where condition is a logical expression that evaluates either to .TRUE. or .FALSE.. BLOCK1 and BLOCK2 consist of one or more FORTRAN statements. If a block contains more than one statement, each statement must be in a separate line. Statements of BLOCK1 and BLOCK2 may be any FORTRAN statements including IF statements, assignment statements, input/output statements, repetition statements, transfer (GOTO) statements and others. In the above construct, BLOCK1 will be executed if condition has the value .TRUE.. If the value of condition is .FALSE., BLOCK2 will be executed. In either case, only one block is executed. After executing one of the two blocks, control transfers to the first statement after the ENDIF.

The keywords IF and THEN should appear in the same line along with the condition. The condition should be between parentheses. The keyword ELSE should appear in a separate line and the construct must end with the keyword ENDIF in a separate line. BLOCK1 and BLOCK2 begin, in a new line, after the column in which IF, ELSE and ENDIF appear. This is known as indentation. Indentation is not a must but it increases program readability.

3.1.2 Examples on the IF-ELSE Construct

The following examples illustrate the IF-ELSE construct.

Example 1: Write a FORTRAN program that reads two integer numbers and prints the maximum.
Solution:

```fortran
INTEGER NUM1, NUM2
READ*, NUM1, NUM2
PRINT*, 'INPUT: ', NUM1, NUM2
IF (NUM1 .GT. NUM2) THEN
  PRINT*, 'MAXIMUM IS ', NUM1
ELSE
  PRINT*, 'MAXIMUM IS ', NUM2
ENDIF
END
```

Example 2: What will be the output of the previous program if the input line is as follows:

```
347 -670
```

Solution:

The output will be as follows:

```
INPUT: 347 -670
MAXIMUM IS 347
```

Example 3: Write a FORTRAN program that reads an integer number and finds out if the number is even or odd. The program should print a proper message.

Solution:

```fortran
INTEGER K
READ*, K
PRINT*, 'INPUT: ', K
IF(K / 2 * 2 .EQ. K) THEN
  PRINT*, 'EVEN'
ELSE
  PRINT*, 'ODD'
ENDIF
END
```

Example 4: What will be the output of the previous program if the input is as follows:

```
79
```

Solution: The output will be as follows:

```
INPUT: 79
ODD
```

3.2 IF Construct

3.2.1 Definition

We sometimes require a block of statements to be executed, if a condition is .TRUE.. Otherwise, if the condition is .FALSE., no statements must be executed. In this case we use the IF construct. The IF construct has the following general form:

```
IF (condition) THEN
  BLOCK
ENDIF
```

where condition is a logical expression that evaluates to either .TRUE. or .FALSE.. BLOCK consists of one or more FORTRAN statements. A statement in the BLOCK may be any FORTRAN statement including the IF statement. BLOCK will be executed if the condition evaluates to .TRUE.. The control then transfers to the first statement after the ENDIF. If the condition evaluates to .FALSE., control transfers to the first
statement after **ENDIF**, without executing any statement inside the **IF** construct. The keywords **IF** and **THEN** should appear in the same line along with the condition. The condition must be between parentheses. As was the case in the previous **IF** construct, indentation is not a must but it increases readability.

3.2.2 Examples on the IF Construct

The following examples illustrate the **IF** construct.

Example 1: Write a **FORTRAN** program that reads a grade. If the grade is not zero, the program must add 2 points to the grade. Then, the new grade should be printed.

Solution:

```fortran
REAL GRADE
READ*, GRADE
PRINT*, 'ORIGINAL GRADE IS ', GRADE
IF (GRADE .GT. 0) THEN
    GRADE = GRADE + 2.0
    PRINT*, 'SCALED GRADE IS ', GRADE
ENDIF
END
```

Example 2: What will be the output of the previous program if the input line is as follows:

7.5

Solution: The output is as follows:

```
ORIGINAL GRADE IS 7.5000000
SCALED GRADE IS 9.5000000
```

Example 3: What will be the output of the program of the previous example if the input line is as follows:

0.0

Solution: The output is as follows:

```
ORIGINAL GRADE IS 0.0000000
```

Example 4: Write a **FORTRAN** program that reads a student ID and his GPA. If the GPA is greater than or equal to 3.0, the program should print the message 'HONOR'.

Solution:

```fortran
REAL GPA
INTEGER ID
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.0) THEN
    PRINT*, 'HONOR'
ENDIF
END
```

Example 5: What will be the output of the previous program if the input line is as follows:

918962 2.90

Solution: The output is as follows: (Note: Since the condition in the **IF** statement is not satisfied, the message HONOR is not printed.)

```
INPUT: 918962 2.9000000
```
3.3 IF-ELSEIF Construct

3.3.1 Definition

Assume you are given a numeric grade. A letter grade is to be printed based on the standard criteria i.e. if the grade is greater than or equal to 90, letter A is to be printed; if the grade is greater than or equal to 80, letter B is to be printed and so on. In such a case, we must use several IF statements. Instead FORTRAN provides a construct that can select a single block of statements from several blocks based on different conditions. This construct is the IF-ELSEIF construct and it is used when a single block is to be executed from a choice of several blocks. The general form of this construct is as follows:

```
IF (condition-1) THEN
    BLOCK1
ELSEIF (condition-2) THEN
    BLOCK2
ELSEIF (condition-3) THEN
    BLOCK3
    ...
ELSEIF (condition-n) THEN
    BLOCKn
ELSE
    BLOCKn+1
ENDIF
```

where condition-\(i\) for \(i = 1, 2, 3, \ldots, n\) is a logical expression that evaluates to either .TRUE. or .FALSE.. \(BLOCKi\) consists of one or more FORTRAN statements. The statements in each BLOCK are FORTRAN statements including any type of IF constructs. In the IF-ELSEIF construct, \(BLOCK1\) will be executed if condition-1 evaluates to .TRUE.. The control then transfers to the first statement after the ENDIF. If condition-1 evaluates to .FALSE., condition-2 is examined. If condition-2 evaluates to .TRUE., .TRUE., \(BLOCK2\) will be executed and control transfers to the first statement after the ENDIF. Otherwise, condition-3 is examined and if it evaluates to .TRUE., \(BLOCK3\) will be executed and control transfers to the first statement after the ENDIF. The same action is applied to the rest of the ELSEIF clauses until a condition evaluates to .TRUE.. If all conditions evaluate to .FALSE., the ELSE part, i.e. \(BLOCKn+1\), is executed and control passes to the first statement after the ENDIF. The ELSE part is optional. If all conditions are .FALSE. and there is no ELSE part, control passes to the first statement after the ENDIF, without executing any of the blocks. In summary, the block corresponding to first condition that evaluates to .TRUE. is the only block that is executed. In case, no condition evaluates to .TRUE., the block corresponding to the ELSE part, if present, is executed. Indentation is not a must but it increases readability.

3.3.2 Examples on the IF-ELSEIF Construct

The following examples illustrate the IF-ELSEIF construct

Example 1: Write a FORTRAN program that reads a student ID and his GPA out of 4.0. The program should print a message according to the following:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
third IF-ELSEIF Construct

GPA ≥ 3.5	EXCELLENT
3.5 > GPA ≥ 3.0	VERY GOOD
3.0 > GPA ≥ 2.5	GOOD
2.5 > GPA ≥ 2.0	FAIR
GPA < 2.0	POOR

Solution:

```plaintext
REAL GPA  
INTEGER ID  
CHARACTER*10 STATE  
READ*, ID, GPA  
PRINT*, 'INPUT: ', ID, GPA  
IF (GPA .GE. 3.5) THEN  
  STATE = 'EXCELLENT'  
ELSEIF (GPA .GE. 3.0) THEN  
  STATE = 'VERY GOOD'  
ELSEIF (GPA .GE. 2.5) THEN  
  STATE = 'GOOD'  
ELSEIF (GPA .GE. 2.0) THEN  
  STATE = 'FAIR'  
ELSE  
  STATE = 'POOR'  
ENDIF  
PRINT*, ID, ' ', STATE  
END
```

Another Solution:

```plaintext
REAL GPA  
INTEGER ID  
CHARACTER*10 STATE  
READ*, ID, GPA  
PRINT*, 'INPUT: ', ID, GPA  
IF (GPA .LT. 2.0) THEN  
  STATE = 'POOR'  
ELSEIF (GPA .LT. 2.5) THEN  
  STATE = 'FAIR'  
ELSEIF (GPA .LT. 3.0) THEN  
  STATE = 'GOOD'  
ELSEIF (GPA .LT. 3.5) THEN  
  STATE = 'VERY GOOD'  
ELSE  
  STATE = 'EXCELLENT'  
ENDIF  
PRINT*, ID, ' ', STATE  
END
```

Example 2: The following table has two columns, the first column gives the sample input to the previous program and the second column shows the expected output.

<table>
<thead>
<tr>
<th>Sample Input</th>
<th>Expected Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>927322 2.3</td>
<td>INPUT: 927322 2.3000000 927322 FAIR</td>
</tr>
<tr>
<td>922822 3.4</td>
<td>INPUT: 922822 3.4000000 922822 VERY GOOD</td>
</tr>
<tr>
<td>848000 1.8</td>
<td>INPUT: 848000 1.8000000 848000 POOR</td>
</tr>
</tbody>
</table>

This Copy was edited & prepared by Husni Al-Muhtaseb as part of KFUPM open Course initiative
Example 3: Use IF-ELSEIF constructs to write a FORTRAN program that reads a student ID and his GPA out of 4.0. The program should print a message according to the following:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA (\geq 3.5)</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>3.5 > GPA (\geq 3.0)</td>
<td>VERY GOOD</td>
</tr>
<tr>
<td>3.0 > GPA (\geq 2.5)</td>
<td>GOOD</td>
</tr>
<tr>
<td>2.5 > GPA (\geq 2.0)</td>
<td>FAIR</td>
</tr>
<tr>
<td>GPA < 2.0</td>
<td>POOR</td>
</tr>
</tbody>
</table>

Solution:

```fortran
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
    STATE = 'EXCELLENT'
ELSE
    IF (GPA .GE. 3.0) THEN
        STATE = 'VERY GOOD'
    ELSE
        IF (GPA .GE. 2.5) THEN
            STATE = 'GOOD'
        ELSE
            IF (GPA .GE. 2.0) THEN
                STATE = 'FAIR'
            ELSE
                STATE = 'POOR'
            ENDIF
        ENDIF
    ENDIF
ENDIF
PRINT*, ID, STATE
END
```

Example 4: Rewrite the above program using IF constructs.

```fortran
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
    STATE = 'EXCELLENT'
ELSE
    IF (GPA .GE. 3.0) THEN
        STATE = 'VERY GOOD'
    ELSE
        IF (GPA .GE. 2.5) THEN
            STATE = 'GOOD'
        ELSE
            IF (GPA .GE. 2.0) THEN
                STATE = 'FAIR'
            ELSE
                STATE = 'POOR'
            ENDIF
        ENDIF
    ENDIF
ENDIF
PRINT*, ID, ' ', STATE
END
```
Solution:

```fortran
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) THEN
  STATE = 'EXCELLENT'
ENDIF
IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) THEN
  STATE = 'VERY GOOD'
ENDIF
IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) THEN
  STATE = 'GOOD'
ENDIF
IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) THEN
  STATE = 'FAIR'
ENDIF
IF (GPA .LT. 2.0) THEN
  STATE = 'POOR'
ENDIF
PRINT*, ID,' ', STATE
END
```

Example 5: Write a FORTRAN program that reads three integer numbers and finds and prints the maximum. Use IF-ELSEIF construct.

Solution:

```fortran
INTEGER X1, X2, X3, MAXIM
READ*, X1, X2, X3
IF (X1 .GE. X2 .AND. X1 .GE. X3) THEN
  MAXIM = X1
ELSEIF (X2 .GE. X3) THEN
  MAXIM = X2
ELSE
  MAXIM = X3
ENDIF
PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS = ', MAXIM
END
```

3.4 Simple IF Construct

3.4.1 Definition

Sometimes a single FORTRAN statement must be executed if a condition is .TRUE.. In such cases, we may use a simple form of the IF construct which is written in a single line. It has the following general form:

```fortran
IF (condition) STATEMENT
```

where condition evaluates to .TRUE. or .FALSE. and STATEMENT is a simple FORTRAN statement such as an assignment statement, a READ statement, a PRINT statement, a GOTO statement, or a STOP statement. If condition evaluates to .TRUE., the IF construct is executed and the control passes to the next statement. If condition is .FALSE., the IF construct is not executed and the control transfers to the next statement.
3.4.2 Examples on the Simple IF Construct

The following examples illustrate the simple IF construct.

Example 1: Use simple IF constructs to write a FORTRAN program that reads a student ID and his GPA out of 4.0. The program should print a message according to the following:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Message</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPA ≥ 3.5</td>
<td>EXCELLENT</td>
</tr>
<tr>
<td>3.5 > GPA ≥ 3.0</td>
<td>VERY GOOD</td>
</tr>
<tr>
<td>3.0 > GPA ≥ 2.5</td>
<td>GOOD</td>
</tr>
<tr>
<td>2.5 > GPA ≥ 2.0</td>
<td>FAIR</td>
</tr>
<tr>
<td>GPA < 2.0</td>
<td>POOR</td>
</tr>
</tbody>
</table>

Solution:

```fortran
INTEGER ID
REAL GPA
CHARACTER*10 STATE
READ*, ID, GPA
PRINT*, 'INPUT: ', ID, GPA
IF (GPA .GE. 3.5) STATE = 'EXCELLENT'
IF (GPA .GE. 3.0 .AND. GPA .LT. 3.5) STATE = 'VERY GOOD'
IF (GPA .GE. 2.5 .AND. GPA .LT. 3.0) STATE = 'GOOD'
IF (GPA .GE. 2.0 .AND. GPA .LT. 2.5) STATE = 'FAIR'
IF (GPA .LT. 2.0) STATE = 'POOR'
PRINT*, ID, ' ', STATE
END
```

Example 2: Write a FORTRAN program that reads three integer numbers and finds and prints the maximum. Use simple IF constructs.

Solution:

```fortran
INTEGER X1, X2, X3, MAXIM
READ*, X1, X2, X3
PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
MAXIM = X1
IF (X2 .GT. MAXIM) MAXIM = X2
IF (X3 .GT. MAXIM) MAXIM = X3
PRINT*, 'THE MAXIMUM OF THE THREE NUMBERS IS ', MAXIM
END
```

Another Solution:

```fortran
INTEGER X1, X2, X3
READ*, X1, X2, X3
PRINT*, 'THE NUMBERS ARE ', X1, X2, X3
IF (X1 .GE. X2 .AND. X1 .GE. X3) PRINT*, 'MAXIMUM IS ', X1
IF (X2 .GE. X1 .AND. X2 .GE. X3) PRINT*, 'MAXIMUM IS ', X2
IF (X3 .GE. X1 .AND. X3 .GE. X2) PRINT*, 'MAXIMUM IS ', X3
END
```
3.5 Exercises

1. What will be printed by the following programs? If an error message is generated, which statement causes the error?

1. ```
INTEGER N, M
N = 15
M = 10
IF (M.GE.N) THEN
 M = M + 1
 IF (N.EQ.M) THEN
 N = N + 5
 ELSEIF (N.GT.0) THEN
 N = N + 10
 ENDIF
ENDIF
M = M - 1
PRINT*, M, N
END
```

2. ```
LOGICAL A, B
INTEGER EX1, EX2, EX3
READ*, EX1, EX2, EX3
A = EX1.LE.EX2. OR. EX2.LE.EX3
B = EX2+2.GT.EX3*2
IF (B) THEN
  A = .NOT. A
ELSE
  B = .NOT. B
ENDIF
PRINT*, A, B
END
```

Assume the input for the program is:

```
40 35 20
```

3. ```
REAL A, B, C
A = -3
B = -4.0
IF (.NOT. A.LT.B) THEN
 C = A - B
ELSE
 C = A * B
ENDIF
PRINT*, C
END
```

4. ```
REAL A,B
INTEGER I
READ*, A, I, B
IF (A.LT.3.0) THEN
  PRINT*, A+I
  IF (B.LT.2.5) THEN
    PRINT*, B**I
  ENDIF
ELSE
  PRINT*, A*B*I
ENDIF
END
```

Assume the input for the program is:
5. PROGRAM INTEGER A, B, C
READ*, A, B, C
IF (A.GT.B) THEN
 IF (B.LT.C) THEN
 PRINT*, B
 ELSE
 PRINT*, C
 ENDIF
ELSE
 PRINT*, A
ENDIF
PRINT*, A, B, C
END

Assume the input for the program is:
-2 -4 -3

6. PROGRAM LOGICAL A, B
INTEGER K1, K2
K1 = 10
K2 = 12
A = K1.LT.K2
B = .TRUE.
IF (A).AND.B = .FALSE.
PRINT*, A, B
END

7. PROGRAM REAL A, B
INTEGER K, L
READ*, A, B, L, K
IF (A .GT. B) THEN
 IF (A .LT. L/2) THEN
 PRINT*, 'THURSDAY'
 ELSE
 PRINT*, 'SUNDAY'
 ENDIF
ELSE
 IF (K/4.GE.B-2) THEN
 PRINT*, 'MONDAY'
 ELSE
 PRINT*, 'TUESDAY'
 ENDIF
ENDIF
END

Assume the input for the program is:
3.0 3.0 4 6

8. PROGRAM INTEGER RANKX, RANKY
REAL X, Y
READ*, X, Y
IF (X.GT.Y) THEN
 RANKX = 1
 RANKY = 2
ELSE
 RANKX = 2
 RANKY = 1
ENDIF
PRINT*, RANKX, RANKY
END
Assume the input for the program is:

```
4.0 4.0
```

9. **INTEGER** SALARY, BONUS, TOTAL
INTEGER AGE, EXP
READ*, IDNO, AGE, EXP, SALARY
IF (AGE.GE.40 .OR. EXP.GT.10) **THEN**
 BONUS = SALARY/8 + 450.0
ELSE
 BONUS = SALARY/10 + 350.0
ENDIF
TOTAL = SALARY + BONUS
PRINT*, IDNO, BONUS, TOTAL
END

Assume the input for the program is:

```
B34567 38 12 40000
```

2. Write a FORTRAN program that reads the value of a real number (DELTA). If the value of (DELTA) is negative, then the program prints the message (NUMBER IS OUT OF RANGE). Otherwise, the program computes the square root of (DELTA) and prints the result.

3. Write a complete FORTRAN program that reads the variables A, B and C, then computes the value of X where:

\[
x = \sqrt{a - b + 2a^2}
\]

The program should take care of the problem of dividing by zero or getting a negative number under the square root. The program should print the appropriate messages accordingly (i.e. "DIVIDING BY ZERO", or, "NEGATIVE NUMBER UNDER SQUARE ROOT"). If both errors occur, the program should print both messages. If no error occurs, the program should print the value of X.

4. Consider the following structure where A is a real variable:

```
**IF** (A.LE.10) **THEN**  
  **IF** (A.LT.5) **THEN**  
    **PRINT***, 'AAA'  
  **ELSEIF** (A.LT.4) **THEN**  
    **PRINT***, 'BBB'  
  **ELSEIF** (A.GT.6) **THEN**  
    **PRINT***, 'CCC'  
  **ELSE**  
    **PRINT***, 'DDD'  
  **ENDIF**  
**ENDIF**
```

The condition that causes AAA to be printed is (A < 5).

1. What is the condition that will cause BBB to be printed?
2. What is the condition that will cause CCC to be printed?
3. What is the condition that will cause DDD to be printed?

5. Assume that V1 and V2 are **LOGICAL** variables and STATEMENT1, STATEMENT2 and STATEMENT3 are any valid FORTRAN statements. Given the following **IF**-structure:
choose the equivalent structure(s) from the following:

I. IF (NOT V1) THEN
 IF (NOT V2) THEN
 STATEMENT2
 ELSE
 STATEMENT3
 ENDIF
 ELSE
 STATEMENT1
ENDIF

II. IF (NOT V2) THEN
 STATEMENT2
 ELSEIF (V1) THEN
 STATEMENT1
 ELSE
 STATEMENT3
 ENDIF

III. IF (V1) THEN
 STATEMENT1
 ELSE
 IF (NOT V2) THEN
 STATEMENT2
 ELSE
 STATEMENT3
 ENDIF
 ENDIF

6. Consider the following FORTRAN 77 program segment:
 IF (A.GT.B .OR. A.EQ.B) PRINT*, A
Which one(s) of the following segments is(are) equivalent to the above?

I. IF (A.GE.B) THEN
 PRINT*, A
 ENDIF

II. IF (A.GT.B .AND. A.EQ.B) THEN
 PRINT*, A
 ENDIF

III. IF (NOT (A.LT.B)) THEN
 PRINT*, A
 ENDIF

7. What values of X cause the value of A to be changed in the following statement?
 IF (X.LT.3.0 .AND. 7.0.LT.X) A = A + 1

8. Write a complete FORTRAN program that reads a real number into a real variable NUM. If NUM is non-zero prints the value of its reciprocal (1/NUM) . Otherwise, prints the message "RECIPIROCAL NOT DEFINED".
9. Give the FORTRAN statements that perform the steps indicated below:
 1. If \(y \) is not positive, and \(3.5 > x > 1.5 \) then print the value of \(y \).
 2. If time is greater than 15.0, increment time by 1.0.
 3. If dist is less than 50.0 and time is greater than 10.0, increment time by 2.0.
 Otherwise, increment time by 2.5.
 4. Interchange the value of \(a \) and \(b \) (i.e. \(a \) gets the value of \(b \) and \(b \) gets the old value of \(a \), if both \(a \) and \(b \) are positive.
 5. If grade is greater than or equal to 4.0 then increment \(a \) by 1.0. If grade is greater than or equal to 3.0 but less than 4.0 then increment \(b \) by 1.0. If grade is greater than or equal to 2.0 but less than 3.0 then increment \(c \) by 1.0, otherwise increment \(d \) by 1.0.

10. Assume \(\text{COND1}, \text{COND2}, \text{COND3}, \text{and COND4} \) are FORTRAN logical expressions. Consider the following program segment.

```fortran
IF (COND1) THEN
  IF (COND2) THEN
    PRINT*, 'RIYADH'
  ELSE
    IF (COND3) THEN
      PRINT*, 'JEDDAH'
    ELSE
      PRINT*, 'KHOBAR'
    ENDIF
  ENDIF
ELSEIF (COND4) THEN
  PRINT*, 'TAIF'
ELSE
  PRINT*, 'DHAHRAN'
ENDIF
```

If the output of the above segment is `KHOBAR`.

What are the logical values of \(\text{COND1}, \text{COND2}, \text{COND3} \) and \(\text{COND4} \)?

11. Write a program that reads an integer number \(N \) and prints YES if the following expression is satisfied.

\[0 < N < 100 \quad \text{and} \quad N > 50 \]

12. Write a FORTRAN program which reads an integer number between 10 and 99 and prints the number reversed. For example, if the number read is 87, then the program output must be 78.

13. Consider the following IF statements carefully. Each of Blocks A, B, C, D, E, F, G, H represents a block of FORTRAN statements.

```fortran
  IF (CONDITION) THEN
    A
  ELSE
    B
  ENDIF
  C
  END
```
II. IF (CONDITION) D
 END

III. IF (CONDITION) THEN
 F
 ELSEIF (CONDITION) THEN
 G
 ELSE
 H
 ENDIF
 END

Assuming that X has a value 0.0, which block(s) are executed in program segments (i), (ii) and (iii), if CONDITION is the expression listed below?

 i) X.GE.0
 ii) X.LE.0
 iii) X.GT.0
 iv) X.LT.0

14. Write a FORTRAN program that reads three integers A, B, and C. The program checks if A, B, and C are in increasing order or in decreasing order and prints an appropriate message. If the integers are not in order, then the program prints UNORDERED. For example, if the input is 3 4 5

 The program prints
 INCREASING ORDER

15. A year between 1900 and 1999 is a LEAP year if it is divisible by 4 and not by 100 or if it is divisible by 400. Write a FORTRAN program which will read a year and determine whether the year is a LEAP or NOT. The program should print one of the following messages accordingly:

 THE YEAR IS OUT OF RANGE

 or

 THE YEAR IS A LEAP YEAR

 or

 THE YEAR IS NOT A LEAP YEAR

16. Consider the following IF statement:

 IF (X.GE.Y) THEN
 PRINT*, X
 ELSE
 PRINT*, Y
 ENDIF

 In each of the following program segments, fill the spaces by relational or logical operators (.EQ., .NE., .LT., LE., .GT., .GE., .AND., .OR., .NOT.) such that each of the program segments below gives the same output as the program segment above.

 I. IF (X ------- Y) PRINT*, X
 IF (X ------- Y) PRINT*, Y
II. IF (X.GT.Y) THEN
 PRINT*, X
ELSEIF (X ----- Y) THEN
 PRINT*, X
ELSE
 PRINT*, Y
ENDIF

III. IF (X ----- Y ----- X.EQ.Y) THEN
 PRINT*, X
ELSE
 PRINT*, Y
ENDIF

17. Write a program that reads any two positive integer numbers and finds the larger of
the two numbers. The program then checks if the larger number is divisible by the
smaller one. If it is divisible the program should print the word DIVISIBLE. If the
larger number is not divisible by the smaller number, the program checks if both
numbers are odd and prints BOTH ODD.

3.6 Solutions to Exercises

Ans 1.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>15</td>
<td>F</td>
</tr>
<tr>
<td>1.0</td>
<td>4.5</td>
<td></td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>-4</td>
<td>-3</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>MONDAY</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ans 2.

READ*, DELTA
IF (DELTA .LT. 0.0) THEN
 PRINT*, 'NUMBER IS OUT OF RANGE'
ELSE
 PRINT*, DELTA ** 0.5
ENDIF
END

Ans 3.

READ*, A, B, C
D = A - B + 2 * A ** 3
IF (C .EQ. 0 .OR. D .LT. 0) THEN
 IF (C .EQ. 0) PRINT*, 'DIVISION BY ZERO'
 IF (D .LT. 0) PRINT*, 'NEGATIVE UNDER SQUARE ROOT'
ELSE
 X = D ** 0.5/ C
 PRINT*, X
ENDIF
END
Ans 4.

1. Never
2. 10 ≥ A > 6
3. 6 ≥ A ≥ 5

Ans 5.

I and III

Ans 6.

I and III

Ans 7.

No values for X,
A can't be changed according to this condition

Ans 8.

```plaintext
REAL NUM
READ*, NUM
IF (NUM .NE. 0) THEN
  PRINT*, 1 / NUM
ELSE
  PRINT*, 'RECIPROCAL NOT DEFINED'
ENDIF
END
```

Ans 9.

1. If
2. IF (TIME .GT. 15.0) TIME = TIME + 1
3. IF (DIST .LT. 50.0 .AND. TIME .GT. 10.0) THEN
 TIME = TIME + 2.0
 ELSE
 TIME = TIME + 2.5
 ENDIF
4. IF (A .GT. 0 .AND. B .GT. 0) THEN
 T = A
 A = B
 B = T
 ENDIF
5. IF (GRADE .GE. 4.0) THEN
 A = A + 1.0
 ELSEIF (GRADE .GE. 3.0) THEN
 B = B + 1.0
 ELSEIF (GRADE .GE. 2.0) THEN
 C = C + 1.0
 ELSE
 D = D + 1.0
 ENDIF
```
Ans 10.

COND1 : T
COND2 : F
COND3 : F
COND4 : Can be T or F

Ans 11.

```plaintext
READ*, N
IF (N .GT. 50 .AND. N .LT. 100) THEN
 PRINT*, 'YES'
ENDIF
END
```

Ans 12.

```plaintext
INTEGER REV
READ*, K
IF (K .GT. 10 .AND. K .LE. 99) THEN
 REV = (K - K / 10 * 10) * 10 + K / 10
 PRINT*, REV
ELSE
 PRINT*, 'NUMBER IS OUT OF RANGE'
ENDIF
END
```

Ans 13.

<table>
<thead>
<tr>
<th>Value</th>
<th>i) A, C</th>
<th>ii) D, E</th>
<th>iii) F</th>
</tr>
</thead>
<tbody>
<tr>
<td>X .GE. 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X .LE. 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X .GT. 0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X .LT. 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ans 14.

```plaintext
READ*, A, B, C
IF (A .GE. B .AND. B .GE. C) THEN
 PRINT*, 'DECREASING ORDER'
ELSEIF(A .LE. B .AND. B .LE. C) THEN
 PRINT*, 'INCREASING ORDER'
ELSE
 PRINT*, 'UNORDERD'
ENDIF
END
```

Ans 15.

```plaintext
INTEGER Y
READ*, Y
IF(Y .GE. 1900 .AND. Y .LE. 1999) THEN
 IF(Y/4*4.EQ.Y .AND.Y/100*100 .NE.Y .OR.Y/400*400.EQ.Y) THEN
 PRINT*, 'THE YEAR IS A LEAP YEAR'
 ELSE
 PRINT*, 'THE YEAR IS NOT A LEAP YEAR'
 ENDIF
ELSE
 PRINT*, 'THE YEAR IS OUT OF RANGE'
ENDIF
END
```
Ans 16.
   i) X \geq Y    ii) X \equiv Y    iii) X \gt Y \lor X \lt Y

Ans 17.

```fortran
READ*, M, N
IF (M \geq N) THEN
 MAX = M
 MIN = N
ELSE
 MAX = N
 MIN = M
ENDIF
IF (MAX / MIN * MIN \equiv MAX) THEN
 PRINT*, 'DIVISIBLE'
ELSE
 IF (MAX/2*2 .NE. MAX .AND. MIN/2*2 .NE. MIN) THEN
 PRINT*, 'BOTH ODD'
 ENDIF
ENDIF
END
```
