8. The centers of mass (with centimeters understood) for each of the five sides are as follows:

\[
\begin{align*}
(x_1, y_1, z_1) &= (0, 20, 20) & \text{for the side in the } yz \text{ plane} \\
(x_2, y_2, z_2) &= (20, 0, 20) & \text{for the side in the } xz \text{ plane} \\
(x_3, y_3, z_3) &= (20, 20, 0) & \text{for the side in the } xy \text{ plane} \\
(x_4, y_4, z_4) &= (40, 20, 20) & \text{for the remaining side parallel to side 1} \\
(x_5, y_5, z_5) &= (20, 40, 20) & \text{for the remaining side parallel to side 2}
\end{align*}
\]

Recognizing that all sides have the same mass m, we plug these into Eq. 9-5 to obtain the results (the first two being expected based on the symmetry of the problem).

(a) \[
x_{\text{com}} = \frac{mx_1 + mx_2 + mx_3 + mx_4 + mx_5}{5m} = \frac{0 + 20 + 20 + 40 + 20}{5} = 20 \text{ cm}
\]

(b) \[
y_{\text{com}} = \frac{my_1 + my_2 + my_3 + my_4 + my_5}{5m} = \frac{20 + 0 + 20 + 20 + 40}{5} = 20 \text{ cm}
\]

(c) \[
z_{\text{com}} = \frac{mz_1 + mz_2 + mz_3 + mz_4 + mz_5}{5m} = \frac{20 + 20 + 0 + 20 + 20}{5} = 16 \text{ cm}
\]
21. Using Eq. 9-22, the necessary speed v is

$$v = \frac{p}{m} = \frac{(1600 \text{ kg})(1.2 \text{ km/h})}{80 \text{ kg}} = 24 \text{ km/h}.$$
31. Our notation is as follows: the mass of the motor is M; the mass of the module is m; the initial speed of the system is v_0; the relative speed between the motor and the module is v_r; and, the speed of the module relative to the Earth is v after the separation. Conservation of linear momentum requires

$$(M + m)v_0 = mv + M(v - v_r).$$

Therefore,

$$v = v_0 + \frac{Mv_r}{M + m} = 4300\text{km/h} + \frac{(4m)(82\text{km/h})}{4m + m} = 4.4 \times 10^3 \text{km/h}. $$
42. (a) We use Eq. 9-42. The thrust is

\[R v_{rel} = Ma \]
\[= \left(4.0 \times 10^4 \text{ kg} \right) \left(2.0 \text{ m/s}^2 \right) \]
\[= 8.0 \times 10^4 \text{ N} . \]

(b) Since \(v_{rel} = 3000 \text{ m/s} \), we see from part (a) that \(R \approx 27 \text{ kg/s} \).