The magnitude F of the force required to pull the lid off is $F = (p_o - p_i)A$, where p_o is the pressure outside the box, p_i is the pressure inside, and A is the area of the lid. Recalling that $1 \text{ N/m}^2 = 1 \text{ Pa}$, we obtain

$$p_i = p_o - \frac{F}{A} = 1.0 \times 10^5 \text{ Pa} - \frac{480 \text{ N}}{4 \times 10^{-4} \text{ m}^2} = 3.8 \times 10^4 \text{ Pa}.$$
19. (a) At depth \(y \) the gauge pressure of the water is \(p = \rho gy \), where \(\rho \) is the density of the water. We consider a horizontal strip of width \(W \) at depth \(y \), with (vertical) thickness \(dy \), across the dam. Its area is \(dA = W \, dy \) and the force it exerts on the dam is \(dF = p \, dA = \rho gy \, W \, dy \). The total force of the water on the dam is

\[
F = \int_0^D \rho gy \, W \, dy = \frac{1}{2} \rho g WD^2 .
\]

(b) Again we consider the strip of water at depth \(y \). Its moment arm for the torque it exerts about \(O \) is \(D - y \) so the torque it exerts is \(d\tau = dF(D - y) = \rho gyW(D - y)dy \) and the total torque of the water is

\[
\tau = \int_0^D \rho gyW(D - y) \, dy = \rho gW \left(\frac{1}{2} D^3 - \frac{1}{3} D^3 \right) = \frac{1}{6} \rho g WD^3 .
\]

(c) We write \(\tau = rF \), where \(r \) is the effective moment arm. Then,

\[
r = \frac{\tau}{F} = \frac{\frac{1}{6} \rho g WD^3}{\frac{1}{2} \rho g WD^2} = \frac{D}{3} .
\]
32. (a) Since the lead is not displacing any water (of density ρ_w), the lead’s volume is not contributing to the buoyant force F_b. If the immersed volume of wood is V_i, then

$$F_b = \rho_w V_i g = 0.90 \rho_w V_{\text{wood}} g = 0.90 \rho_w g \left(\frac{m_{\text{wood}}}{\rho_{\text{wood}}} \right),$$

which, when floating, equals the weights of the wood and lead:

$$F_b = 0.90 \rho_w g \left(\frac{m_{\text{wood}}}{\rho_{\text{wood}}} \right) = (m_{\text{wood}} + m_{\text{lead}}) g.$$

Thus,

$$m_{\text{lead}} = 0.90 \rho_w \left(\frac{m_{\text{wood}}}{\rho_{\text{wood}}} \right) - m_{\text{wood}}$$

$$= \frac{(0.90)(1000 \text{ kg/m}^3)(3.67 \text{ kg})}{600 \text{ kg/m}^3} - 3.67 \text{ kg} = 1.84 \text{ kg} \approx 1.8 \text{ kg}.$$

(b) In this case, the volume $V_{\text{lead}} = m_{\text{lead}}/\rho_{\text{lead}}$ also contributes to F_b. Consequently,

$$F_b = 0.90 \rho_w g \left(\frac{m_{\text{wood}}}{\rho_{\text{wood}}} \right) + \left(\frac{\rho_w}{\rho_{\text{lead}}} \right) m_{\text{lead}} g = (m_{\text{wood}} + m_{\text{lead}}) g,$$

which leads to

$$m_{\text{lead}} = \frac{0.90(\rho_w/\rho_{\text{wood}})m_{\text{wood}} - m_{\text{wood}}}{1 - \rho_w/\rho_{\text{lead}}}$$

$$= \frac{1.84 \text{ kg}}{1 - \left(1.00 \times 10^3 \text{ kg/m}^3 / 1.13 \times 10^4 \text{ kg/m}^3 \right)} = 2.0 \text{ kg}.$$
41. Suppose that a mass Δm of water is pumped in time Δt. The pump increases the potential energy of the water by Δmgh, where h is the vertical distance through which it is lifted, and increases its kinetic energy by $\frac{1}{2}\Delta mv^2$, where v is its final speed. The work it does is $\Delta W = \Delta mgh + \frac{1}{2}\Delta mv^2$ and its power is

$$P = \frac{\Delta W}{\Delta t} = \frac{\Delta m}{\Delta t} \left(gh + \frac{1}{2}v^2 \right) .$$

Now the rate of mass flow is $\Delta m/\Delta t = \rho_w Av$, where ρ_w is the density of water and A is the area of the hose. The area of the hose is $A = \pi r^2 = \pi(0.010 \text{ m})^2 = 3.14 \times 10^{-4} \text{ m}^2$ and $\rho_w Av = (1000 \text{ kg/m}^3)(3.14 \times 10^{-4} \text{ m}^2)(5.0 \text{ m/s}) = 1.57 \text{ kg/s}$. Thus,

$$P = \rho Av \left(gh + \frac{1}{2}v^2 \right)$$

$$= (1.57 \text{ kg/s}) \left((9.8 \text{ m/s}^2)(3.0 \text{ m}) + \frac{(5.0 \text{ m/s})^2}{2} \right) = 66 \text{ W} .$$
54. (a) Since Sample Problem 15-9 deals with a similar situation, we use the final equation (labeled “Answer”) from it:

\[v = \sqrt{2gh} \quad \Rightarrow \quad v = v_0 \text{ for the projectile motion.} \]

The stream of water emerges horizontally (\(\theta_0 = 0^\circ \) in the notation of Chapter 4), and setting \(y - y_0 = -(H - h) \) in Eq. 4-22, we obtain the “time-of-flight”

\[
t = \sqrt{-\frac{2(H - h)}{-g}} = \sqrt{\frac{2}{g}(H - h)}.
\]

Using this in Eq. 4-21, where \(x_0 = 0 \) by choice of coordinate origin, we find

\[x = v_0 t = \sqrt{2gh} \sqrt{\frac{2}{g}(H - h)} = 2\sqrt{h(H - h)}. \]

(b) The result of part (a) (which, when squared, reads \(x^2 = 4h(H - h) \)) is a quadratic equation for \(h \) once \(x \) and \(H \) are specified. Two solutions for \(h \) are therefore mathematically possible, but are they both physically possible? For instance, are both solutions positive and less than \(H \)? We employ the quadratic formula:

\[
h^2 - Hh + \frac{x^2}{4} = 0 \quad \Rightarrow \quad h = \frac{H \pm \sqrt{H^2 - x^2}}{2},
\]

which permits us to see that both roots are physically possible, so long as \(x < H \). Labeling the larger root \(h_1 \) (where the plus sign is chosen) and the smaller root as \(h_2 \) (where the minus sign is chosen), then we note that their sum is simply

\[
h_1 + h_2 = \frac{H + \sqrt{H^2 - x^2}}{2} + \frac{H - \sqrt{H^2 - x^2}}{2} = H.
\]

Thus, one root is related to the other (generically labeled \(h' \) and \(h \)) by \(h' = H - h \).

(c) We wish to maximize the function \(f = x^2 = 4h(H - h) \). We differentiate with respect to \(h \) and set equal to zero to obtain

\[
\frac{df}{dh} = 4H - 8h = 0 \quad \Rightarrow \quad h = \frac{H}{2}
\]

as the depth from which an emerging stream of water will travel the maximum horizontal distance.