Solutions of Exam# 1

Q1
(a) A particle of mass m moves in a Yukawa potential 
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Find the equation of a bound orbit of the particle (having an orbital angular momentum ( ℓ ) about the center of the potential) to the first order of r/a.

(b) A particle of mass m moves in a central force field that has a constant magnitude F0 but always points toward the origin.

(i) Find the angular velocity  ω φ  required for the particle to move in a circular orbit of radius ro .

(ii) Find the frequency of  ω r of small radial oscillations about the circular orbit. Both answers should be in terms of m, r0, F0.

(a) The bound motion means that 
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The orbit of particle moving in this central force potential is given by
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In first order of 
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, that is (e-r/a ~ 1-r/a)



[image: image6.wmf]()

22

22

22

22

22

r

drdr

kkkk

rErE

rraarr

q

mm

mm

»=

æö

+---+-

ç÷

èø

òò

ll

ll


Now effectively, this is the orbit of particle of total energy 
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 moving in potential 
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. It is well known that this orbit is given by (see Chapter 8 Eqs 8.38, 8.40, 8.41)
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Where 
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If 
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, the orbit is ellipsoid; if 
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(b)
(i) In equilibrium, for a circular orbit of radius r0,
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(ii) The angular momentum (which is conserved) of a particle in circular orbit is
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The force acting on a particle, which is placed a distance r (r is very close to equilibrium position 
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where 
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. So the frequency of oscillation is
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Q2
For the elastic scattering of T0= 5.0 MeV α-particles (
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) from gold (
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)(initially at rest) at a scattering angle in the LAB of ψ = 90◦. Find the following:

(i) The LAB kinetic energies of the scattered α-particle and gold.

(ii) The recoil scattered angle of gold ζ.

(iii) The scattering angles of α-particle (θ1) and gold (θ2) in the CM system.

(iv) The impact parameter b and the distance of closest approach between the particles.

(v) The differential cross section (LAB) of scattering at ψ = 90◦.

(vi) The ratio of the probabilities of scattering at  ψ = 90◦ to that at   ψ = 30◦.

(i)
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 is angle through which ( particle  is deflected in LAB
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(i) Conservation of momentum in LAB:
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Conservation of energy in LAB:
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Thus,
 
[image: image44.wmf]22

21

11

21

mm

vu

mm

æö

-

=

ç÷

+

èø

     and     

[image: image45.wmf](

)

2

22

1

21

212

2

m

vu

mmm

æö

=

ç÷

ç÷

+

èø

   (3)
The kinetic energy of ( particle  after collision in LAB is
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 The kinetic energy of particle 
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Evidently, conservation of energy is satisfied.
(ii)  From Eq (1) , (2) and (3)  we obtain the recoil scattering angle of 
[image: image49.wmf]197

79

Au



 
[image: image50.wmf]21

21

tan0.979944.42

mm

mm

zz

æö

-

==Þ=°

ç÷

+

èø


(iii) The velocity of CM of system is
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The velocity of 
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In CM, clearly after collision, particle 
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 moves in opposite direction of that of
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    i.e. θ1 =180 – 88.84 = 91.16◦.
(iv) The impact parameter in CM is given by Eq (9.139).
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where 
[image: image59.wmf](

)

(

)

2

1212

00

2791.44.227.52.

44

qqzze

kMeVfmMeVfm

pepe

====

 and 
[image: image60.wmf](

)

(

)

222

12

011221

12

1

4.90

22

mm

TmumuuMeV

mm

æö

¢¢¢

=+==

ç÷

ç÷

+

èø

    is the total energy of system in CM,

so
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We note that b is the impact parameter of 
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 particle with respect to CM, so the impact parameter of 
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To find the closest distance from (  particle to the center of mass:

 In CM system, the orbit equation of particle ( is
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 is closest distance from (  particle to the center of mass, and
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But the actual minimum distance between particles is
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(v) Using formula
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where 
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where T0’ = 4.90 MeV; θ1= 91.16◦, k = 227.52 MeV.fm
We find this differential cross section in LAB at ( = 90°:
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(vi) Since the probability of scattering at an angle ψ =
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For ψ’=30◦ the corresponding θ’ is related by 
[image: image82.wmf]1

1

1

1

2

sin'

tan''30.58

cos'

m

m

q

yq

q

=Þ=

+

o



[image: image83.wmf](

)

(

)

(

)

2

22

LABCM1

22

cos'1sin'

''

1sin'

xx

x

yy

sysq

y

+-

=

-


where 
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Q3 (a) Find the center of mass of a uniformly solid cone of base diameter (2a) and height (h) and a solid hemisphere (of the same material as the cone)of radius (a) where the two basis are touching..

(b) A 104 kg spherical probe of radius R = 20 cm is launched vertically upward from the surface of Earth with an initial speed 6000 m/s. If the air resistance  F = -(1/2) cwρAv2; where the constant cw = 0.2, ρ = air density ( =1.3 kg/m3 ),  A = πR2 and v is the speed of the probe, determine the maximum height reached and the time taken to reach this height. 

Solve the problem taking g = constant first then solve it again taking g = G M /r2; where M is the mass of Earth.
(a) 
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For the hemisphere:
Put the shell in the z > 0 region, with the base in the x-y plane. By symmetry, 
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Using z = r cos ( and doing the integrals gives
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For the cone: 
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By symmetry, 
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Use cylindrical coordinates (, (, z.
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[image: image95.wmf]The center of mass is on the axis
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For the compound problem: (see Fig)

By symmetry, 
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The center of mass of the cone is at 
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The center of mass of the hemisphere is at 
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So the problem reduces to
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(b1) 
When we add the expression for air resistance, the differential equation that describes the projectile’s ascent is
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where 
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 would be the terminal velocity if the object were falling from a sufficient height (using 
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 as the density of air). Solution of this differential equation gives
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(2)

This gives v = 0 at time 
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. The velocity can in turn be integrated to give the y-coordinate of the projectile on the ascent. The height it reaches is the y-coordinate at time (:
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(3)

which is ( 600 km.

(b2) Changing the acceleration due to gravity from –g to 
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 changes our differential equation for y to
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(5)

Q4  A pojectile is fired due East from a point on the surface of Earth at a northern latitude λ with an initial velocity V0 and at an angle α to the horizontal. Take South to be x-axis and East to be y-axis and z-axis to be vertically upward from the surface of Earth. 
(a) Assume that the z motion to be unaffected by the Coriolis force, show that the side deflection when the projectile strikes Earth is 
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(b) Now take the effect of the Coriolis force in the z-motion find the range of the projectile (Range = y at z=0).

(a)
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The coordinates x, y, z as in the diagram:  South is x-axis and East is y-axis, z is vertically upward.

Then, the velocity of the particle and the rotation frequency of the Earth are expressed as




[image: image114.wmf](

)

(

)

(

)

0,,

,0,cos,0,sin

xz

yz

wwwlwl

ù

=

ú

ú

==-

û

v

&

&

w


(1)

so that the acceleration due to the Coriolis force is
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(2)

Since the motion is in y-z plane, then we see that the lateral (side) deflection of the projectile is in the x direction and that the acceleration is
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Integrating this expression twice and using the initial conditions, 
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Now, we treat the z motion of the projectile as if it were undisturbed by the Coriolis force. In this approximation, we have
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from which the time T of impact is obtained by setting z = 0:
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Substituting this value for T into (2), we find the lateral deflection at impact to be
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(5)

(b) In the previous part we assumed the z motion to be unaffected by the Coriolis force. 
Recall that the Coriolis acceleration is:
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With 
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The upward acceleration is given by 
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from which the time of flight is obtained by integrating twice, using the initial conditions, and then setting z = 0:
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Now, the acceleration in the y direction is
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Integrating twice and using the initial conditions, 
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(9)

Substituting (7) into (9), the range R( is
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(10)

We can stop here. 
However, if we want to compare R’ with the range for the case ω=0, we have the following:
We now expand each of these three terms, retaining quantities up to order ( but neglecting all quantities proportional to 
[image: image133.wmf]2

w

 and higher powers of (. In the first two terms, this amounts to neglecting 
[image: image134.wmf]0

2coscos

V

wal

 compared to g in the denominator. But in the third term we must use




[image: image135.wmf]2

2

0

00

0

3

2

0

0

2

2cossin

22

cossin1coscos

2

1coscos

4

sincoscos

V

VV

gg

V

g

g

V

R

g

aa

w

aaal

w

al

w

aal

éù

@+

êú

éù

ëû

-

êú

ëû

=+

¢


(11)

where 
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The range difference, 
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Substituting for 
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 in terms of 
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 from (12), we have, finally,
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