Review Problems

From

Chapter 10\&11

1) At $t=0$, a disk has an angular velocity of 360 rev/min, and constant angular acceleration of $-0.50 \mathrm{rad} / \mathrm{s}^{* *} 2$. How many rotations does the disk make before coming to rest?

A1 226
A2 180
A3 360

$$
\omega_{0}=\frac{360 \times 2 \pi}{60}=120 \pi \mathrm{rad} / \mathrm{s}, \quad \alpha=-0.50 \mathrm{rad} / \mathrm{s}_{2}, \omega=0
$$

A4 90
A5 113

$$
\begin{aligned}
& \omega=\omega_{0}+\alpha t \Rightarrow t=\frac{-\omega_{0}}{\alpha} \Rightarrow \text { find } t \\
& \theta=\omega t-\frac{1}{2} \alpha t^{2}=-\frac{1}{2} \alpha t^{2} \Rightarrow \text { find } \theta \text { in rad } / \mathrm{s}
\end{aligned}
$$

divide by 2π to get θ in revolutions.
2) Two wheels A and B are identical. Wheel B is rotating with twice the angular velocity of wheel A. The ratio of the radial acceleration of a point on the rim of B (a2) to the radial acceleration of a point on the rim of $A(a 1)$ is (a2/a1) :

A1 4
A2 2
A3 $1 / 2$
A4 $1 / 4$
A5 1

$$
\begin{aligned}
& \omega_{B}=2 \omega_{A} \Rightarrow \frac{\omega_{B}}{\omega_{A}}=2 \\
& a_{1}=\omega_{A}^{2} R \\
& a_{2}=\omega_{B}^{2} R \\
& \frac{a_{2}}{a_{1}}=\frac{\omega_{B}^{2} R}{\omega_{A}^{2} R}=\left(\frac{\omega_{B}}{\omega_{A}}\right)^{2}=4
\end{aligned}
$$

3) Fig shows a pulley $\left(\mathrm{R}=3.0 \mathrm{~cm}\right.$ and $\left.\mathrm{I} \circ=0.0045 \mathrm{~kg} \mathrm{~m}^{*} * * 2\right)$ suspended from the ceiling. A rope passes over it with a 2.0 kg block attached to one end and a 4.0 kq block attached to the other. When the speed of the heavier block is $2.0 \mathrm{~m} / \mathrm{s}$ the total kinetic energy of the pulley and blocks is :

A1	22	J
A2	10	J
A3	2	J
A4	16	J
A5	38	J

Let's call the 2 kg body 1 , the 4 kg body 2 and the pulley p;

$\mathrm{v}_{\mathrm{p}}=v_{1}=v_{2}=2 \mathrm{~m} / \mathrm{s}, \mathrm{v}_{\mathrm{p}}$ is the velocity of any point at the rim of the pulley.
$\omega_{\mathrm{p}}=\frac{v_{p}}{R}=\frac{2}{0.03}=66.7 \mathrm{rad} / \mathrm{s}$
$\mathrm{K}_{1}=\frac{1}{2} m_{1} v_{1}{ }^{2}=\frac{1}{2} \times 2 \times 2^{2}=4 \mathrm{~J}$
$\mathrm{K}_{2}=\frac{1}{2} m_{2} \nu_{2}{ }^{2}=\frac{1}{2} \times 4 \times 2^{2}=8 \mathrm{~J}$
$\mathrm{K}_{\mathrm{p}}=\frac{1}{2} I_{o} \omega_{p}{ }^{2}=\frac{1}{2} \times 0.0045 \times 66.7^{2}=10 \mathrm{~J}$
$K=\mathrm{K}_{1}+\mathrm{K}_{2}+\mathrm{K}_{\mathrm{p}}=4+8+10=22 \mathrm{~J}$
4) A uniform $\operatorname{rod}(M=2.0 \mathrm{~kg}, L=2.0 \mathrm{~m})$ is held vertical about a pivot at point P, a distance L/4 from one end (as in the Figure). The rotational inertia of the rod about P is $1.17 \mathbf{~ k g}^{*} m^{* *} 2$. If it starts rotating from rest, what is the linear speed of the lowest point of the rod as it passes again through the vertical position (v)?

A1 $8.7 \mathrm{~m} / \mathrm{s}$
A2 $4.8 \mathrm{~m} / \mathrm{s}$
A3 $17 \mathrm{~m} / \mathrm{s}$
A4 2.4 m/s
A5 zero
$K_{i}=0.0, \quad U_{i}=\operatorname{Mg}\left(\frac{L}{4}\right) \quad($ taking our $U=0.0$ at the point $P)$
$\Rightarrow E_{i}=K_{i}+U_{i}=\operatorname{Mg}\left(\frac{L}{4}\right)$
$K_{f}=\frac{1}{2} I \omega^{2}, U_{f}=-M g\left(\frac{L}{4}\right) \Rightarrow E_{f}=K_{f}+U_{f}=\frac{1}{2} I \omega^{2}-M g\left(\frac{L}{4}\right)$
but $E_{i}=E_{f} \quad \Rightarrow \quad M g\left(\frac{L}{4}\right)=\frac{1}{2} I \omega^{2}-M g\left(\frac{L}{4}\right)$

$\frac{1}{2} M g(L)=\frac{1}{2} I \omega^{2} \Rightarrow \omega=\sqrt{\frac{M g L}{I}}=\frac{v}{(3 L / 4)} \Rightarrow$ find v
5) A uniform solid sphere of radius 0.10 m rolls smoothly across a horizontal table at a speed $0.50 \mathrm{~m} / \mathrm{s}$ with total kinetic energy 0.70 J . Find the mass of the sphere.

A1 4.0 kg	$R=0.10 \mathrm{~m}, \mathrm{~K}=0.70 \mathrm{~J}$
A2 8.0 kg	
A3 2.0 kg	$K=\frac{1}{2} M v_{c o m}^{2}+\frac{1}{2} I \omega^{2} \quad$ (1)
A4 1.0 kg	
A5 5.0 kg	$\operatorname{sub} . \mathrm{in}(1)$ for $I=\frac{2}{5} M R^{2} \quad$ (sphere) and for $\omega=\frac{v_{\text {com }}}{R}$ (rolling)

to get M.
6) A 3.0 kg wheel, rolling smoothly on a horizontal surface, has a rotational inertia about its axis $=M * R * * 2 / 2$, where M is its mass and R is its radius. A horizontal force is applied to the axle so that the center of mass has an acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{* *} 2$. The magnitude of the frictional force of the surface is :

A1 3.0 N
A2 6.0 N
A3 9.0 N
A4 12 N
A5 0 N

$$
\begin{aligned}
& \alpha=\frac{a_{c o m}}{R} \\
& \tau=I \alpha \\
& f_{s} R=\left(\frac{1}{2} M R^{2}\right) \times\left(\frac{a_{c o m}}{R}\right) \\
& f_{s}=\frac{1}{2} M a_{c o m}=\frac{1}{2} \times 3.0 \times 2.0=3.0 \mathrm{~N}
\end{aligned}
$$

7) A 2.0 kg particle is moving such that its position vector (r) relative to the origin is $r=(-2.0 * t * * 2 i+3.0 j) \mathrm{m}$. What is the torque (about the origin) acting on the particle at $\mathrm{t}=2.0 \mathrm{~s}$?

| A1 $24 k$ | N.m |
| :--- | :--- | :--- |
| A2 - $\mathbf{3 6} k$ | N.m |
| A3 -24k | N.m |
| A4 -48k | N.m |
| A5 0 | |

$$
\begin{aligned}
& v=\frac{d r}{d t}=-4 t i \\
& a=\frac{d v}{d t}=-4.0 i \\
& F=m a=2.0(-4.0) i=-8.0 i \\
& r(2.0)=-8.0 i+3.0 j \\
& \tau(2.0)=r \times F \\
& =(-8.0 i+3.0 j) \times(-8.0 i) \\
& =(3.0 j) \times(-8.0 i) \\
& =24 k
\end{aligned}
$$

8) In the figure, $\mathrm{m} 1=0.50 \mathrm{~kg}, \mathrm{~m} 2=0.40 \mathrm{~kg}$ and the pulley has a disk shape of radius 0.05 m and mass $\mathrm{M}=1.5 \mathrm{~kg}$. What is the linear acceleration of the block of mass m2?

A1 $0.59 \mathrm{~m} / \mathrm{s}^{* *} 2$ A2 $0.42 \mathrm{~m} / \mathrm{s}^{* *} 2$ A3 $1.46 \mathrm{~m} / \mathrm{s}^{* *} 2$ A4 $0.21 \mathrm{~m} / \mathrm{s}^{* *} 2$ A5 0.0
$\tau_{\text {net }}=I \alpha=I\left(\frac{a}{R}\right)$
$I=\frac{1}{2} M R^{2}$
$T_{1} R-T_{2} R=I\left(\frac{a}{R}\right) \quad$ (3)

from (1) and (2) we get :
$T_{1}-T_{2}=\left(m_{1}-m_{2}\right) g-\left(m_{1}+m_{2}\right) a$
put this in (3) to get the value of a

9) Consider two thin rods each of length ($L=1.5 \mathrm{~m}$) and mass $\mathbf{3 0} \mathrm{g}$, arranged on a frictionless table as shown in the figure. The system rotates about a vertical axis through point O with constant angular speed of $4.0 \mathrm{rad} / \mathrm{s}$. What is the angular momentum of the system about O ?

A1 0.18 kg*m**2/s
A2 0.54 kg*m**2/s
A3 $1.5 \mathrm{~kg}^{*} \mathrm{~m}^{* *}$ 2/s
A4 0.27 kg*m**2/s
A5 0.0

$$
\begin{aligned}
& I=2 I_{\text {rod }} \text { around } O \\
&=2\left(\frac{1}{12} M L^{2}+M\left(\frac{L}{2}\right)^{2}\right)=2\left(\frac{1}{3} M L^{2}\right) \\
& L(\text { around } O)=I \omega
\end{aligned}
$$

10) Fig shows two disks mounted on bearings on a common axis . The first disk has rotational inertia I and is spinning with angular velocity w. The second disk has rotational inertia $2 I$ and is spinning in the same direction as the first disk with angular velocity 2 w . The two disks are slowly forced toward each other along the axis until they stick and have a final common angular velocity of:

A1 $5 *_{w} / 3$
A2 w^{\star} sqret(3)
A3 w
A4 $3 *$ w
A5 $2 *^{*}$

$$
\begin{aligned}
& \ell_{1}=I_{1} \omega_{1}=I \omega \\
& \ell_{2}=I_{2} \omega_{2}=4 I \omega \\
& L_{i}=\ell_{1}+\ell_{2}=5 I \omega \\
& I_{\text {tot }}=I_{1}+I_{2}=3 I \\
& L_{f}=I_{\text {tot }} \omega_{f}=3 I \omega_{f} \\
& L_{i}=L_{f} \\
& 5 I \omega=3 I \omega_{f}
\end{aligned}
$$

$$
\omega_{f}=\frac{5}{3} \omega
$$

